HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Phenolphthalein induces thymic lymphomas accompanied by loss of the p53 wild type allele in heterozygous p53-deficient (+/-) mice.

Abstract
Epidemiology studies have indicated that many human cancers are influenced by environmental factors. Genetically altered mouse model systems offer us the opportunity to study the interaction of chemicals with genetic predisposition to cancer. Using the heterozygous p53-deficient (+/-) mouse, an animal model carrying one wild type p53 gene and one p53 null allele, we studied the effects of phenolphthalein on tumor induction and p53 gene alterations. Earlier studies showed that phenolphthalein caused carcinogenic effects in Fisher 344 rats and B6C3F1 mice after a 2-yr dosing period (Dunnick and Hailey, Cancer Res. 56: 4922-4926, 1996). The p53 (+/-) mice received phenolphthalein in the feed at concentrations of 200, 375, 750, 3,000, or 12,000 ppm (approximately 43, 84, 174, 689, or 2,375 mg/kg body weight/day or 129, 252, 522, 2,867, or 7,128 mg/m2 body surface area/day) for up to 6 mo. A target organ cancer site that accumulated p53 protein in the B6C3F1 mouse (i.e., thymic lymphoma) was also a target site for cancer in the p53 (+/-) mouse. In the p53 (+/-) mouse, treatment-related atypical hyperplasia and malignant lymphoma of thymic origin were seen in the control and dosed groups at a combined incidence of 0, 5, 5, 25, 100, and 95%, respectively. Twenty-one of the thymic lymphomas were examined for p53 gene changes, and all showed loss of the p53 wild type allele. Chemical-induced ovarian tumors in the B6C3F1 mouse showed no evidence for p53 protein accumulation and did not occur in the p53 (+/-) mouse. The p53-deficient (+/-) mouse model responded to phenolphthalein treatment with a carcinogenic response in the thymus after only 4 mo of dosing. This carcinogenic response took 2 yr to develop in the conventional B6C3F1 mouse bioassay. The p53-deficient (+/-) mouse is an important model for identifying a carcinogenic response after short-term (< 6 mo) exposures. Our studies show that exposure to phenolphthalein combined with a genetic predisposition to cancer can potentiate the carcinogenic process and cause p53 gene alterations, a gene alteration found in many human cancers.
AuthorsJ K Dunnick, J F Hardisty, R A Herbert, J C Seely, E M Furedi-Machacek, J F Foley, G D Lacks, S Stasiewicz, J E French
JournalToxicologic pathology (Toxicol Pathol) 1997 Nov-Dec Vol. 25 Issue 6 Pg. 533-40 ISSN: 0192-6233 [Print] United States
PMID9437796 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Carcinogens
  • Phenolphthaleins
  • Phenolphthalein
Topics
  • Animals
  • Blotting, Southern
  • Body Weight (drug effects)
  • Carcinogens (toxicity)
  • Female
  • Genes, p53 (drug effects)
  • Heterozygote
  • Loss of Heterozygosity
  • Lymphoma (chemically induced, genetics, pathology)
  • Mice
  • Mice, Inbred C57BL
  • Phenolphthalein
  • Phenolphthaleins (toxicity)
  • Thymus Neoplasms (chemically induced, genetics, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: