HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Upregulation of Periostin Through CREB Participates in Myocardial Infarction-induced Myocardial Fibrosis.

AbstractABSTRACT:
Myocardial fibrosis after myocardial infarction (MI) leads to heart failure, which has become an important global public health issue. One of the most important features of myocardial fibrosis is the abnormal deposition of extracellular matrix (ECM) proteins. Periostin is one of the ECM proteins. Cyclic AMP response element-binding protein 1 (CREB) is well known for its involvement in multiple signaling in myocardial fibrosis. It has been confirmed that CREB could regulate ECM proteins deposition. However, little is known about the relationship between CREB and periostin post-MI. This study aims to verify the hypothesis that CREB promotes the expression of periostin in MI-induced myocardial fibrosis. To test this hypothesis, primary rat cardiac fibroblasts were cultured and rat model of MI was established. The level of myocardial fibrosis post-MI was identified by histological staining. The expressions of CREB and periostin were detected through western blot and reverse transcription quantity polymerase chain reaction. The upregulation and downregulation of CREB and periostin were established by plasmid, small interfere RNA (siRNA), and lentivirus, respectively. High levels of CREB and periostin were found post-MI in our study. Meanwhile, the expression of periostin was decreased after CREB downregulation both in vivo and in vitro. Finally, with the treatment of pAV-CREB and si-periostin, the expressions of collagen Ⅰ and Ⅲ were attenuated. The expression of periostin was elevated post-MI and participated in MI-induced myocardial fibrosis, which was regulated through CREB. This study provides a novel idea and potential intervention target for MI-induced myocardial fibrosis.
AuthorsKe Xue, Shuai Chen, Jiayin Chai, Wenjing Yan, Xinyu Zhu, Hongyan Dai, Wen Wang
JournalJournal of cardiovascular pharmacology (J Cardiovasc Pharmacol) Vol. 79 Issue 5 Pg. 687-697 (05 01 2022) ISSN: 1533-4023 [Electronic] United States
PMID35522701 (Publication Type: Journal Article)
CopyrightCopyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Topics
  • Animals
  • Fibroblasts (pathology)
  • Fibrosis
  • Heart
  • Myocardial Infarction (pathology)
  • Myocardium (metabolism)
  • Rats
  • Up-Regulation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: