HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibitory Effects of Ginsenoside Rb1 on Early Atherosclerosis in ApoE-/- Mice via Inhibition of Apoptosis and Enhancing Autophagy.

Abstract
Inflammation is a major contributing factor to the progression of atherosclerosis. Ginsenoside Rb1 (Rb1), an active saponin of Panax notoginseng, has been found to exert beneficial effects on inflammation and oxidative stress. This study investigated the ability of Rb1 to inhibit the formation of atherosclerotic plaques and the potential mechanisms. In this study, the effects of Rb1 on the development of atherosclerosis were investigated in ApoE-/- deficient mice fed with a western diet. Mice were intragastrically administrated with Rb1 (10 mg/kg) for 8 weeks. This study is that ginsenoside Rb1 exerted an inhibitory effect on early atherosclerosis in ApoE-/- mice via decreasing body weight and food intake daily, upregulating the lipid levels of serum plasma, including those of TC, TG and LDL-C and HDL-C and reducing the atherosclerotic plaque area, suppressing inflammatory cytokines (levels of IL-1β, IL-6 and TNF-α) in the serum of ApoE-/- mice, changing the expression levels of BCL-2, BAX, cleaved caspase-3 and cleaved caspase-9 and weakening apoptosis associated with anti-inflammatory activity. Hence, all these effects against atherosclerosis were tightly associated with regulation of necrosis or apoptosis associated with anti-inflammatory activity. Additionally, the results found that ginsenoside Rb1 increased autophagy flux to inhibit apoptosis via acceleration of autophagy by promoting transformation of LC3 from type I to type II in high-fat diet-induced atherosclerosis in ApoE-/- mice. This finding, along with those of the previous study, provides evidence that Rb1 promotes the process of autophagy to protect against atherosclerosis via regulating BCL-2 family-related apoptosis. These results indicate that Rb1 exhibits therapeutic effects in atherosclerosis by reversing the imbalance between apoptosis and autophagy.
AuthorsPing Zhou, Weijie Xie, Yun Luo, Shan Lu, Ziru Dai, Ruiying Wang, Xuelian Zhang, Guang Li, Guibo Sun, Xiaobo Sun
JournalMolecules (Basel, Switzerland) (Molecules) Vol. 23 Issue 11 (Nov 08 2018) ISSN: 1420-3049 [Electronic] Switzerland
PMID30413028 (Publication Type: Journal Article)
Chemical References
  • Anti-Inflammatory Agents
  • Apolipoproteins E
  • Ginsenosides
  • Lipids
  • Proto-Oncogene Proteins c-bcl-2
  • ginsenoside Rb1
Topics
  • Animals
  • Anti-Inflammatory Agents (administration & dosage, pharmacology)
  • Apolipoproteins E (deficiency)
  • Apoptosis (drug effects)
  • Atherosclerosis (blood, drug therapy, genetics)
  • Autophagy
  • Body Weight (drug effects)
  • Cell Line
  • Diet, Western (adverse effects)
  • Disease Models, Animal
  • Eating (drug effects)
  • Gene Expression Regulation (drug effects)
  • Ginsenosides (administration & dosage, pharmacology)
  • Humans
  • Lipids (blood)
  • Mice
  • Proto-Oncogene Proteins c-bcl-2 (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: