HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Investigating free radical generation in HepG2 cells using immuno-spin trapping.

Abstract
Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity.
AuthorsYuya Horinouchi, Fiona A Summers, Marilyn Ehrenshaft, Kazuyoshi Kawazoe, Koichiro Tsuchiya, Toshiaki Tamaki, Ronald P Mason
JournalFree radical biology & medicine (Free Radic Biol Med) Vol. 75 Suppl 1 Pg. S33 (Oct 2014) ISSN: 1873-4596 [Electronic] United States
PMID26461344 (Publication Type: Journal Article)
CopyrightCopyright © 2014. Published by Elsevier Inc.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: