HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Profiling blood-based brain biomarkers and cytokines in experimental autoimmune encephalomyelitis model of multiple sclerosis using single-molecule array technology.

Abstract
Experimental autoimmune encephalomyelitis (EAE) remains a widely used pre-clinical animal model to study multiple sclerosis (MS). Blood-based cytokines and CNS biomarkers are increasingly used as predictors of neurodegeneration, disease activity, and disability in MS. However, there exists variation in animal model characterization and disease course across animal strains/studies due to understudied confounding factors, limiting the utility of these biomarkers to predict disease activity in EAE. In this study, we investigated the profile of blood-based analytes including, cytokines (IL6, IL17, IL12p70, IL10, and TNFα) and neural markers (NFL and GFAP) in the plasma of relapsing-remitting (RR) (SJL) and chronic (B6) models of EAE during different phases (acute, chronic, and progressive) of disease course using ultrasensitive single molecule array technology (SIMoA, Quanterix), which can detect ultra-low levels of a wide range of analytes. NFL showed a substantial increase during post-disease onset at peak, chronic, and progressive phases in both RR SJL and chronic B6 models of EAE. The increase was markedly pronounced in the chronic B6 model. The leakage of GFAP from CNS into the periphery was also higher after disease onset in EAE, however, it was highest during the acute phase in B6. Out of all cytokines, only IL10 showed consistently lower levels in both models of EAE along the disease duration. We report that NFL, GFAP, and IL10 may be more useful predictors of disease activity and neurological outcome in EAE, which would make them potential candidates for use as surrogate markers for preclinical testing of therapeutic interventions in MS.
AuthorsInsha Zahoor, Sajad Mir, Shailendra Giri
JournalbioRxiv : the preprint server for biology (bioRxiv) (Dec 27 2023) United States
PMID38234812 (Publication Type: Preprint)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: