HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Long-term application of silver nanoparticles in dental restoration materials: potential toxic injury to the CNS.

Abstract
Silver nanoparticles (AgNPs) have durable and remarkable antimicrobial effects on pathogenic microorganisms, such as bacteria and fungi, in dental plaques. As such, they are widely added to dental restoration materials, including composite resins, denture bases, adhesives, and implants, to solve the problems of denture stomatitis, peri-implant inflammation, and oral infection caused by the long-term use of these dental restoration materials. However, AgNPs can be absorbed into the blood circulatory system through the nasal/oral mucosa, lungs, gastrointestinal tract, skin, and other pathways and then distributed into the lungs, kidneys, liver, spleen, and testes, thereby causing toxic injury to these tissues and organs. It can even be transported across the blood-brain barrier (BBB) and continuously accumulate in brain tissues, causing injury and dysfunction of neurons and glial cells; consequently, neurotoxicity occurs. Other nanomaterials with antibacterial or remineralization properties are added to dental restoration materials with AgNPs. However, studies have yet to reveal the neurotoxicity caused by dental restoration materials containing AgNPs. In this review, we summarize the application of AgNPs in dental restoration materials, the mechanism of AgNPs in cytotoxicity and toxic injury to the BBB, and the related research on the accumulation of AgNPs to cause changes of neurotoxicity. We also discuss the mechanisms of neurotoxicity caused by AgNPs and the mode and rate of AgNPs released from dental restorative materials added with AgNPs to evaluate the probability of neurotoxic injury to the central nervous system (CNS), and then provide a theoretical basis for developing new composite dental restoration materials. Mechanism of neurotoxicity caused by AgNPs: AgNPs in the blood circulation enter the brain tissue after being transported across the BBB through transendothelial cell pathway and paracellular transport pathway, and continuously accumulate in brain tissue, causing damage and dysfunction of neurons and glial cells which ultimately leads to neurotoxicity. The uptake of AgNPs by neurons, astrocytes and microglia causes damage to these cells. AgNPs with non-neurotoxic level often increases the secretion of a variety of cytokines, up-regulates the expression of metallothionein in glial cells, even up-regulates autophagy and inflammation response to protect neurons from the toxic damage of AgNPs. However, the protective effect of glial cells induced by AgNPs exposure to neurotoxic levels is insufficient, which leads to neuronal damage and dysfunction and even neuronal programmed cell death, eventually cause neurotoxicity.
AuthorsKaimei Wang, Shiqi Wang, Jingju Yin, Qiankun Yang, Yi Yu, Lin Chen
JournalJournal of materials science. Materials in medicine (J Mater Sci Mater Med) Vol. 34 Issue 11 Pg. 52 (Oct 19 2023) ISSN: 1573-4838 [Electronic] United States
PMID37855967 (Publication Type: Journal Article, Review)
Copyright© 2023. The Author(s).
Chemical References
  • Silver
Topics
  • Humans
  • Silver (pharmacology)
  • Metal Nanoparticles (toxicity)
  • Blood-Brain Barrier (metabolism, pathology)
  • Brain
  • Inflammation (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: