HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Endothelial mechanical stretch regulates the immunological synapse interface of renal endothelial cells in a sex-dependent manner.

Abstract
Increased mechanical endothelial cell stretch contributes to the development of numerous cardiovascular and renal pathologies. Recent studies have shone a light on the importance of sex-dependent inflammation in the pathogenesis of renal disease states. The endothelium plays an intimate and critical role in the orchestration of immune cell activation through upregulation of adhesion molecules and secretion of cytokines and chemokines. While endothelial cells are not recognized as professional antigen-presenting cells, in response to cytokine stimulation, endothelial cells can express both major histocompatibility complex (MHC) I and MHC II. MHCs are essential to forming a part of the immunological synapse interface during antigen presentation to adaptive immune cells. Whether MHC I and II are increased under increased mechanical stretch is unknown. Due to hypertension being multifactorial, we hypothesized that increased mechanical endothelial stretch promotes the regulation of MHCs and key costimulatory proteins on mouse renal endothelial cells (MRECs) in a stretch-dependent manner. MRECs derived from both sexes underwent 5%, 10%, or 15% uniaxial cyclical stretch, and immunological synapse interface proteins were determined by immunofluorescence microscopy, immunoblot analysis, and RNA sequencing. We found that increased endothelial mechanical stretch conditions promoted downregulation of MHC I in male MRECs but upregulation in female MRECs. Moreover, MHC II was upregulated by mechanical stretch in both male and female MRECs, whereas CD86 and CD70 were regulated in a sex-dependent manner. By bulk RNA sequencing, we found that increased mechanical endothelial cell stretch promoted differential gene expression of key antigen processing and presentation genes in female MRECs, demonstrating that females have upregulation of key antigen presentation pathways. Taken together, our data demonstrate that mechanical endothelial stretch regulates endothelial activation and immunological synapse interface formation in renal endothelial cells in a sex-dependent manner.NEW & NOTEWORTHY Endothelial cells contribute to the development of renal inflammation and have the unique ability to express antigen presentation proteins. Whether increased endothelial mechanical stretch regulates immunological synapse interface proteins remains unknown. We found that antigen presentation proteins and costimulatory proteins on renal endothelial cells are modulated by mechanical stretch in a sex-dependent manner. Our data provide novel insights into the sex-dependent ability of renal endothelial cells to present antigens in response to endothelial mechanical stimuli.
AuthorsC Alex Colvert, Kennedy P Hawkins, Marharyta Semenikhina, Mariia Stefanenko, Olesia Pavlykivska, Jim C Oates, Kristine Y DeLeon-Pennell, Oleg Palygin, Justin P Van Beusecum
JournalAmerican journal of physiology. Renal physiology (Am J Physiol Renal Physiol) Vol. 325 Issue 1 Pg. F22-F37 (07 01 2023) ISSN: 1522-1466 [Electronic] United States
PMID37167273 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Cd86 protein, mouse
  • B7-2 Antigen
Topics
  • Endothelial Cells (physiology)
  • Immunological Synapses
  • Cells, Cultured
  • Male
  • Female
  • Animals
  • Mice
  • Kidney (blood supply)
  • Mice, Inbred C57BL
  • Blood Vessels (cytology)
  • Biomechanical Phenomena
  • Inflammation (metabolism)
  • Secretome (metabolism)
  • Sex Characteristics
  • Major Histocompatibility Complex
  • B7-2 Antigen (metabolism)
  • Antigen Presentation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: