HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Carbon Monoxide-Releasing Molecule-2 Ameliorates Particulate Matter-Induced Aorta Inflammation via Toll-Like Receptor/NADPH Oxidase/ROS/NF-κB/IL-6 Inhibition.

Abstract
Particulate matter (PM), a major air pollutant, may be associated with adverse cardiovascular effects. Reactive oxygen species- (ROS-) dependent proinflammatory cytokine production, such as interleukin-6 (IL-6), is a possible underlying mechanism. Carbon monoxide- (CO-) releasing molecule-2 (CORM-2) which liberates exogenous CO can exert many beneficial effects, particularly anti-inflammation and antioxidant effects. The purpose of this study was to explore the protective effects and underpinning mechanisms of CORM-2 on PM-induced aorta inflammation. Here, human aortic vascular smooth muscle cells (HASMCs) were utilized as in vitro models for the assessment of signaling pathways behind CORM-2 activities against PM-induced inflammatory responses, including Toll-like receptors (TLRs), NADPH oxidase, ROS, nuclear factor-kappa B (NF-κB), and IL-6. The modulation of monocyte adherence and HASMC migration, that are two critical cellular events of inflammatory process, along with their regulators, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) and MMP-9, in response to PM by CORM-2, were further evaluated. Finally, mice experiments under different conditions were conducted for the in vivo evaluation of CORM-2 benefits on the expression of inflammatory molecules including IL-6, ICAM-1, VCAM-1, MMP-2, and MMP-9. Our results found that PM could induce aorta inflammation in vitro and in vivo, as evidenced by the increase of IL-6 expression that was regulated by the TLR2 and TLR4/NADPH oxidase/ROS/NF-κB signaling pathway, thereby promoting ICAM-1- and VCAM-1-dependent monocyte adhesion and MMP-2- and MMP-9-dependent HASMC migration. Importantly, our experimental models demonstrated that CORM-2-liberated CO effectively inhibited the whole identified PM-induced inflammatory cascade in HASMCs and tissues. In conclusion, CORM-2 treatment may elicit multiple beneficial effects on inflammatory responses of aorta due to PM exposure, thereby providing therapeutic value in the context of inflammatory diseases of the cardiovascular system.
AuthorsThi Thuy Tien Vo, Chien-Yi Hsu, Yinshen Wee, Yuh-Lien Chen, Hsin-Chung Cheng, Ching-Zong Wu, Wei-Ning Lin, I-Ta Lee
JournalOxidative medicine and cellular longevity (Oxid Med Cell Longev) Vol. 2021 Pg. 2855042 ( 2021) ISSN: 1942-0994 [Electronic] United States
PMID34336088 (Publication Type: Journal Article)
CopyrightCopyright © 2021 Thi Thuy Tien Vo et al.
Chemical References
  • Interleukin-6
  • Organometallic Compounds
  • Reactive Oxygen Species
  • tricarbonyldichlororuthenium (II) dimer
  • NADPH Oxidases
Topics
  • Animals
  • Aorta (drug effects, pathology)
  • Humans
  • Inflammation (drug therapy)
  • Interleukin-6 (metabolism)
  • Male
  • Mice
  • NADPH Oxidases (drug effects)
  • Organometallic Compounds (pharmacology, therapeutic use)
  • Reactive Oxygen Species (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: