HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies.

Abstract
Rosiglitazone is an effective insulin-sensitizer, however associated with bone loss mainly due to increased bone resorption and bone marrow adiposity. We investigated the effect of the co-administration of fish oil rich in omega-3 fatty acids (FAs) on rosiglitazone-induced bone loss in C57BL/6 mice and the mechanisms underlying potential preventive effect. Mice fed the iso-caloric diet supplemented with fish oil exhibited significantly higher levels of bone density in different regions compared to the other groups. In the same cohort of mice, reduced activity of COX-2, enhanced activity of alkaline phosphatase, lower levels of cathepsin k, PPAR-γ, and pro-inflammatory cytokines, and a higher level of anti-inflammatory cytokines were observed. Moreover, fish oil restored rosiglitazone-induced down-regulation of osteoblast differentiation and up-regulation of adipocyte differentiation in C3H10T1/2 cells and inhibited the up-regulation of osteoclast differentiation of RANKL-treated RAW264.7 cells. We finally tested our hypothesis on human Mesenchymal Stromal Cells differentiated to osteocytes and adipocytes confirming the beneficial effect of docosahexaenoic acid (DHA) omega-3 FA during treatment with rosiglitazone, through the down-regulation of adipogenic genes, such as adipsin and FABP4 along the PPARγ/FABP4 axis, and reducing the capability of osteocytes to switch toward adipogenesis. Fish oil may prevent rosiglitazone-induced bone loss by inhibiting inflammation, osteoclastogenesis, and adipogenesis and by enhancing osteogenesis in the bone microenvironment.
AuthorsChiara Cugno, Dhanya Kizhakayil, Rita Calzone, Shaikh Mizanoor Rahman, Ganesh V Halade, Md M Rahman
JournalScientific reports (Sci Rep) Vol. 11 Issue 1 Pg. 10364 (05 14 2021) ISSN: 2045-2322 [Electronic] England
PMID33990655 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Fatty Acids, Omega-3
  • Rosiglitazone
Topics
  • Adipogenesis (drug effects)
  • Aging (physiology)
  • Animals
  • Bone Diseases, Metabolic (chemically induced, physiopathology, prevention & control)
  • Cell Differentiation (drug effects)
  • Diabetes Mellitus, Type 2 (drug therapy)
  • Dietary Supplements
  • Disease Models, Animal
  • Fatty Acids, Omega-3 (administration & dosage)
  • Female
  • Humans
  • Mesenchymal Stem Cells (drug effects, physiology)
  • Mice
  • Mice, Inbred C57BL
  • Osteoblasts (drug effects, physiology)
  • Osteoclasts (drug effects, physiology)
  • Osteogenesis (drug effects)
  • Primary Cell Culture
  • RAW 264.7 Cells
  • Rosiglitazone (adverse effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: