HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Scorpion venom heat-resistant synthesized peptide ameliorates 6-OHDA-induced neurotoxicity and neuroinflammation: likely role of Nav 1.6 inhibition in microglia.

AbstractBACKGROUND AND PURPOSE:
Microglia-related inflammation is associated with the pathology of Parkinson's disease. Functional voltage-gated sodium channels (VGSCs) are involved in regulating microglial function. Here, we aim to investigate the effects of scorpion venom heat-resistant synthesized peptide (SVHRSP) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease-like mouse model and reveal its underlying mechanism.
EXPERIMENTAL APPROACH:
Unilateral brain injection of 6-OHDA was performed to establish Parkinson's disease mouse model. After behaviour test, brain tissues were collected for morphological analysis and protein/gene expression examination. Primary microglia culture was used to investigate the role of sodium channel Nav 1.6 in the regulation of microglia inflammation by SVHRSP.
KEY RESULTS:
SVHRSP treatment attenuated motor deficits, dopamine neuron degeneration, activation of glial cells and expression of pro-inflammatory cytokines induced by 6-OHDA lesion. Primary microglia activation and the production of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) were also suppressed by SVHRSP treatment. In addition, SVHRSP could inhibit mitogen-activated protein kinases (MAPKs) pathway, which plays pivotal roles in the pro-inflammatory response. Notably, SVHRSP treatment suppressed the overexpression of microglial Nav 1.6 induced by 6-OHDA and LPS. Finally, it was shown that the anti-inflammatory effect of SVHRSP in microglia was Nav 1.6 dependent and was related to suppression of sodium current and probably the consequent Na+ /Ca2+ exchange.
CONCLUSIONS AND IMPLICATIONS:
SVHRSP might inhibit neuroinflammation and protect dopamine neurons via down-regulating microglial Nav 1.6 and subsequently suppressing intracellular Ca2+ accumulation to attenuate the activation of MAPKs signalling pathway in microglia.
AuthorsXiujie Li, Xuefei Wu, Na Li, Donglai Li, Aoran Sui, Khizar Khan, Biying Ge, Sheng Li, Shao Li, Jie Zhao
JournalBritish journal of pharmacology (Br J Pharmacol) Vol. 178 Issue 17 Pg. 3553-3569 (09 2021) ISSN: 1476-5381 [Electronic] England
PMID33886140 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2021 The British Pharmacological Society.
Chemical References
  • Cytokines
  • Lipopolysaccharides
  • Scorpion Venoms
  • Oxidopamine
Topics
  • Animals
  • Cytokines
  • Hot Temperature
  • Lipopolysaccharides (toxicity)
  • Mice
  • Microglia
  • Oxidopamine
  • Scorpion Venoms (toxicity)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: