HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Phylogenic analysis of coronavirus genome and molecular studies on potential anti-COVID-19 agents from selected FDA-approved drugs.

Abstract
The emergence of 2019 novel Coronavirus (COVID-19 or 2019-nCoV) has caused significant global morbidity and mortality with no consensus specific treatment. We tested the hypothesis that FDA-approved antiretrovirals, antibiotics, and antimalarials will effectively inhibit COVID-19 two major drug targets, coronavirus nucleocapsid protein (NP) and hemagglutinin-esterase (HE). To test this hypothesis, we carried out a phylogenic analysis of coronavirus genome to understand the origins of NP and HE, and also modeled the proteins before molecular docking, druglikeness, toxicity assessment, molecular dynamics simulation (MDS) and ligand-based pharmacophore modeling of the selected FDA-approved drugs. Our models for NP and HE had over 95% identity with templates 5EPW and 3CL5 respectively in the PDB database, with majority of the amino acids occupying acceptable regions. The active sites of the proteins contained conserved residues that were involved in ligand binding. Lopinavir and ritonavir possessed greater binding affinities for NP and HE relative to remdesivir, while levofloxacin and hydroxychloroquine were the most notable among the other classes of drugs. The Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of gyration (Rg), and binding energy values obtained after 100 ns of MDS revealed good stability of these compounds in the binding sites of the proteins while important pharmacophore features were also identified. The study showed that COVID-19 likely originated from bat, owing to the over 90% genomic similarity observed, and that lopinavir, levofloxacin, and hydroxychloroquine might serve as potential anti-COVID-19 lead molecules for additional optimization and drug development for the treatment of COVID-19.Communicated by Ramaswamy H. Sarma.
AuthorsAhmed A Ishola, Kayode E Adewole, Habibu Tijjani, Suliat I Abdulai, Nnaemeka T Asogwa
JournalJournal of biomolecular structure & dynamics (J Biomol Struct Dyn) Vol. 40 Issue 17 Pg. 7726-7743 (10 2022) ISSN: 1538-0254 [Electronic] England
PMID33749538 (Publication Type: Journal Article)
Chemical References
  • Anti-Bacterial Agents
  • Antimalarials
  • Antiviral Agents
  • Coronavirus Nucleocapsid Proteins
  • Hemagglutinins
  • Ligands
  • Lopinavir
  • Hydroxychloroquine
  • Levofloxacin
  • Esterases
Topics
  • Anti-Bacterial Agents
  • Antimalarials
  • Antiviral Agents (chemistry, pharmacology)
  • Coronavirus Nucleocapsid Proteins
  • Esterases
  • Hemagglutinins
  • Humans
  • Hydroxychloroquine
  • Levofloxacin
  • Ligands
  • Lopinavir
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • SARS-CoV-2
  • COVID-19 Drug Treatment

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: