HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Characterization of inhibitory T cells induced by an analog of type II collagen in an HLA-DR1 humanized mouse model of autoimmune arthritis.

AbstractINTRODUCTION:
We used DR1 transgenic mice and covalently linked DR1 multimers to characterize analog-specific inhibitory T cells in collagen-induced arthritis (CIA). Because of the low numbers of antigen-specific T cells in wild-type mice, functional T-cell studies in autoimmune arthritis have been challenging. The use of T-cell receptor (TCR) transgenic mice has provided useful information, but such T cells may not represent the heterogeneous T-cell response that occurs in natural settings. Our focus was to develop tools to identify and characterize the population of immunoregulatory T cells induced in wild-type mice by an analog peptide of CII259-273, which contains amino acid substitutions at positions 263 (N) and 266 (D) (analog peptide A12).
METHODS:
DR1 multimers, developed by loading empty class II molecules with exogenous peptide, provide a method for visualizing antigen-specific T cells with flow cytometry. However, the low binding avidity of A12 for the major histocompatibility complex (MHC) made this strategy untenable. To overcome this problem, we generated DR1 multimers in which the analog peptide A12 was covalently linked, hoping that the low-avidity analog would occupy enough binding clefts to allow detection of the responsive T cells.
RESULTS:
Staining with the tetramer revealed that A12-specific T cells were readily detectable at 10 days after immunization. These CD4(+) T cells are a highly selective subset of the TCR repertoire and have a limited clonality. Analysis of cytokine expression showed that cells detected by tetramer (A12) expressed primarily suppressive cytokines (interleukin-4 (IL-4) and IL-10) in response to collagen, compared with control cells. Although they did not express Fox-p3, they were extremely effective in preventing and suppressing inflammatory arthritis.
CONCLUSIONS:
In summary, our studies showed that the use of covalently linked multimers allows characterization of analog-specific T cells that are otherwise difficult to detect. The suppressive character of the analog-specific T-cell response suggests that these cells attenuate autoimmunity and differ significantly in phenotype from the inflammatory T cells predominantly found in arthritic joints. Such reagents will become powerful tools to study T-cell responses in RA patients in upcoming clinical trials.
AuthorsMasaru Kimata, David L Cullins, Monica L Brown, David D Brand, Edward F Rosloniec, Linda K Myers, John M Stuart, Andrew H Kang
JournalArthritis research & therapy (Arthritis Res Ther) Vol. 14 Issue 3 Pg. R107 (May 08 2012) ISSN: 1478-6362 [Electronic] England
PMID22569209 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Collagen Type II
  • HLA-DR1 Antigen
Topics
  • Animals
  • Arthritis, Experimental (genetics, immunology)
  • Arthritis, Rheumatoid (immunology)
  • Collagen Type II (immunology)
  • Flow Cytometry
  • HLA-DR1 Antigen (genetics, immunology)
  • Humans
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • T-Lymphocytes (immunology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: