HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibition of the NF-kappaB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo.

Abstract
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Using human cellular DNA microarrays, we found that many nuclear factor kappa B (NF-kappaB)-responsive genes were down-regulated in VZV-infected fibroblasts, suggesting that VZV infection inhibited the NF-kappaB pathway. The activation of this pathway causes a cellular antiviral response, including the production of alpha/beta interferon, cytokines, and other proteins that restrict viral infection. In these experiments, we demonstrated that VZV interferes with NF-kappaB activation in cultured fibroblasts and in differentiated epidermal cells in skin xenografts of SCIDhu mice infected in vivo. VZV infection of fibroblasts caused a transient nuclear translocation of p50 and p65, the canonical NF-kappaB family members. In a process that was dependent upon the presence of infectious VZV, these proteins rapidly became sequestered in the cytoplasm of VZV-infected cells. Exclusion of NF-kappaB proteins from nuclei was associated with the continued presence of IkappaBalpha, which binds p50 and p65 and prevents their nuclear accumulation. IkappaBalpha levels did not diminish even though the protein became phosphorylated and ubiquitinated, as determined based on detection of the characteristic high-molecular-weight form of the protein, and the 26S proteasome remained functional in VZV-infected cells. VZV infection also inhibited the characteristic degradation of IkappaBalpha that is induced by exposure of fibroblasts to tumor necrosis factor alpha. As expected, herpes simplex virus 1 caused the persistent nuclear translocation of NF-kappaB proteins, which has been shown to facilitate its replication, whereas VZV infection progressed without persistent NF-kappaB nuclear localization. We suggest that VZV has evolved a mechanism to limit host cell antiviral defenses by sequestering NF-kappaB proteins in the cytoplasm, a strategy that appears to be unique among the herpesviruses.
AuthorsJeremy O Jones, Ann M Arvin
JournalJournal of virology (J Virol) Vol. 80 Issue 11 Pg. 5113-24 (Jun 2006) ISSN: 0022-538X [Print] United States
PMID16698992 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • NF-kappa B
Topics
  • Cell Line
  • Fibroblasts (metabolism, virology)
  • Herpesvirus 3, Human (genetics, growth & development, physiology)
  • Humans
  • NF-kappa B (antagonists & inhibitors, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: