HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Evidence for direct action of alloxan to induce insulin resistance at the cellular level.

Abstract
To determine whether long-term insulin deficiency alters insulin movement across the endothelium, plasma and lymph dynamics were assessed in dogs after alloxan (50 mg/kg; n = 8) or saline injection (n = 6). Glucose tolerance (KG) and acute insulin response were assessed by glucose injection before and 18 days after treatment. Two days later, hyperglycaemic (16.7 mmol/l) hyperinsulinaemic (60 pmol x min(-1) x kg(-1)) glucose clamps were carried out in a subset of dogs (n = 5 for each group), with simultaneous sampling of arterial blood and hindlimb lymph. Alloxan induced fasting hyperglycaemia (12.9 +/- 2.3 vs 5.7 +/- 0.2 mmol/l; p = 0.018 vs pre-treatment) and variable insulinopenia (62 +/- 14 vs 107 +/- 19 pmol/l; p = 0.079). The acute insulin response, however, was suppressed by alloxan (integrated insulin from 0-10 min: 155 +/- 113 vs 2745 +/- 541 pmol x l(-1) x 10 min(-1); p = 0.0027), resulting in pronounced glucose intolerance (KG: 0.99 +/- 0.19 vs 3.14 +/- 0.38 min(-1); p = 0.0002 vs dogs treated with saline). During clamps, steady state arterial insulin was higher in dogs treated with alloxan (688 +/- 60 vs 502 +/- 38 pmol/l; p = 0.023) due to a 25% reduction in insulin clearance (p = 0.045). Lymph insulin concentrations were also raised (361 +/- 15 vs 266 +/- 27 pmol/l; p = 0.023), such that the lymph to arterial ratio was unchanged by alloxan (0.539 +/- 0.022 vs 0.533 +/- 0.033; p = 0.87). Despite higher lymph insulin, glucose uptake (Rd) was significantly diminished after injection of alloxan (45.4 +/- 2.5 vs 64.3 +/- 6.5 micromol x min(-1) x kg(-1); p = 0.042). This was reflected in resistance of target tissues to the lymph insulin signal (deltaRd/ delta lymph insulin: 3.389 +/- 1.093 vs 11.635 +/- 2.057 x 10(-6) x l x min(-1) x kg(-1) x pmol(-1) x l(-1); p = 0.012) which correlated strongly with the KG (r = 0.86; p = 0.0001). In conclusion, alloxan induces insulinopenic diabetes, with glucose intolerance and insulin resistance at the target tissue level. Alloxan treatment, however, does not alter lymph insulin kinetics, indicating that insulin resistance of Type 1 (insulin-dependent) diabetes mellitus reflects direct impairment at the cellular level.
AuthorsM Ader, J M Richey, R N Bergman
JournalDiabetologia (Diabetologia) Vol. 41 Issue 11 Pg. 1327-36 (Nov 1998) ISSN: 0012-186X [Print] Germany
PMID9833941 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Blood Glucose
  • Insulin
  • Alloxan
Topics
  • Alloxan (pharmacology)
  • Animals
  • Blood Glucose (drug effects, metabolism)
  • Diabetes Mellitus, Experimental (physiopathology)
  • Dogs
  • Glucose Clamp Technique
  • Glucose Intolerance (chemically induced, physiopathology)
  • Hyperglycemia (chemically induced, physiopathology)
  • Insulin (blood, pharmacology, physiology)
  • Insulin Resistance (physiology)
  • Lymph (drug effects, physiology)
  • Male

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: