HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Leveraging Donor Populations to Study the Epidemiology and Pathogenesis of Transfusion-Transmitted and Emerging Infectious Diseases.

Abstract
The tragedy of transfusion-associated hepatitis and HIV spurred a decades-long overhaul of the regulatory oversight and practice of blood transfusion. Consequent to improved donor selection, testing, process control, clinical transfusion practice and post-transfusion surveillance, transfusion in the United States and other high-income countries is now a very safe medical procedure. Nonetheless, pathogens continue to emerge and threaten the blood supply, highlighting the need for a proactive approach to blood transfusion safety. Blood donor populations and the global transfusion infrastructure are under-utilized resources for the study of infectious diseases. Blood donors are large, demographically diverse subsets of general populations for whom cross-sectional and longitudinal samples are readily accessible for serological and molecular testing. Blood donor collection networks span diverse geographies, including in low- and middle-income countries, where agents, especially zoonotic pathogens, are able to emerge and spread, given limited tools for recognition, surveillance and control. Routine laboratory storage and transportation, coupled with data capture, afford access to rich epidemiological data to assess the epidemiology and pathogenesis of established and emerging infections. Subsequent to the State of the Science in Transfusion Medicine symposium in 2022, our working group (WG), "Emerging Infections: Impact on Blood Science, the Blood Supply, Blood Safety, and Public Health" elected to focus on "leveraging donor populations to study the epidemiology and pathogenesis of transfusion-transmitted and emerging infectious diseases." The 5 landmark studies span (1) the implication of hepatitis C virus in post-transfusion hepatitis, (2) longitudinal evaluation of plasma donors with incident infections, thus informing the development of a widely used staging system for acute HIV infection, (3) explication of the dynamics of early West Nile Virus infection, (4) the deployment of combined molecular and serological donor screening for Babesia microti, to characterize its epidemiology and infectivity and facilitate routine donor screening, and (5) national serosurveillance for SARS-CoV-2 during the COVID-19 pandemic. The studies highlight the interplay between infectious diseases and transfusion medicine, including the imperative to ensure blood transfusion safety and the broader application of blood donor populations to the study of infectious diseases.
AuthorsEvan M Bloch, Michael P Busch, Laurence M Corash, Roger Dodd, Benyam Hailu, Steve Kleinman, Sheila O'Brien, Lyle Petersen, Susan L Stramer, Louis Katz
JournalTransfusion medicine reviews (Transfus Med Rev) Vol. 37 Issue 4 Pg. 150769 (Oct 2023) ISSN: 1532-9496 [Electronic] United States
PMID37919210 (Publication Type: Journal Article)
CopyrightCopyright © 2023 Elsevier Inc. All rights reserved.
Topics
  • Humans
  • United States (epidemiology)
  • Communicable Diseases, Emerging (epidemiology, prevention & control)
  • HIV Infections (epidemiology)
  • Transfusion Reaction (epidemiology)
  • Cross-Sectional Studies
  • Pandemics
  • Blood Transfusion
  • Communicable Diseases (epidemiology)
  • Hepatitis C (epidemiology)
  • Blood Donors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: