HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cytotoxic Isopentenyl Phloroglucinol Compounds from Garcinia xanthochymus Using LC-MS-Based Metabolomics.

Abstract
Many unique chemical metabolites with significant antitumor activities have been isolated from Garcinia species and have become a leading hotspot of antitumor research in recent years. The aim of this study was to identify bioactive compounds from different plant parts (leaf, branch, stem bark, fruit, and seed) of G. xanthochymus through combining LC-MS-based metabolomics with cytotoxicity assays. As a result, 70% methanol seed extract exerted significant cytotoxic effects on five human cancer cell types (HL-60, A549, SMMC-7721, MDA-MB-231, and SW480). LC-MS-based metabolomics analysis was used, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), in order to identify 12 potential markers from seed extract that may relate to bioactivity. LC-MS guidance isolated the markers to obtain three compounds and identified new isopentenyl phloroglucinols (1-3, named garxanthochin A-C), using spectroscopic methods. Among them, garxanthochin B (2) demonstrated moderate inhibitory activities against five human cancer cell types, with IC50 values of 14.71~24.43 μM. These findings indicate that G. xanthochymus seed has significant cytotoxic activity against cancer cells and garxanthochin B has potential applications in the development of antitumor-led natural compounds.
AuthorsFan Quan, Xinbo Luan, Jian Zhang, Wenjie Gao, Jian Yan, Ping Li
JournalMetabolites (Metabolites) Vol. 13 Issue 2 (Feb 10 2023) ISSN: 2218-1989 [Print] Switzerland
PMID36837877 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: