HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Reverse transcription PCR to detect low density malaria infections.

Abstract
Background: Targeted malaria elimination strategies require highly sensitive tests to detect low density malaria infections (LDMI). Commonly used methods for malaria diagnosis such as light microscopy and antigen-based rapid diagnostic tests (RDTs) are not sensitive enough for reliable identification of infections with parasitaemia below 200 parasites per milliliter of blood. While targeted malaria elimination efforts on the Thailand-Myanmar border have successfully used high sample volume ultrasensitive quantitative PCR (uPCR) to determine malaria prevalence, the necessity for venous collection and processing of large quantities of patient blood limits the widespread tractability of this method. Methods: Here we evaluated a real-time reverse transcription PCR (RT-qPCR) method that reduces the required sample volume compared to uPCR. To do this, 304 samples collected from an active case detection program in Kayin state, Myanmar were compared using uPCR and RT-qPCR. Results: Plasmodium spp. RT-qPCR confirmed 18 of 21 uPCR Plasmodium falciparum positives, while P. falciparum specific RT-qPCR confirmed 17 of the 21 uPCR P. falciparum positives. Combining both RT-qPCR results increased the sensitivity to 100% and specificity was 95.1%. Conclusion: Malaria detection in areas of low transmission and LDMI can benefit from the increased sensitivity of ribosomal RNA detection by RT-PCR, especially where sample volume is limited. Isolation of high quality RNA also allows for downstream analysis of malaria transcripts.
AuthorsPeter Christensen, Zbynek Bozdech, Wanitda Watthanaworawit, Laurent Rénia, Benoît Malleret, Clare Ling, François Nosten
JournalWellcome open research (Wellcome Open Res) Vol. 6 Pg. 39 ( 2021) ISSN: 2398-502X [Print] England
PMID35592834 (Publication Type: Journal Article)
CopyrightCopyright: © 2021 Christensen P et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: