HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Green Silver Nanoparticles Synthesized from Taverniera couneifolia Elicits Effective Anti-Diabetic Effect in Alloxan-Induced Diabetic Wistar Rats.

Abstract
Background: Using a variety of chemical compounds and biomolecules, researchers have been working on new antidiabetic drugs for many years. Anti-diabetic research is increasingly using nanomaterials because of their unique qualities, such as their tiny size, biocompatibility, and ability to penetrate cell membranes for drug delivery. Using extract of T. couneifolia coated with silver nanoparticles as a model for diabetes mellitus research was one of the goals of this work. Methods: Uv-Vis spectroscopy was used to measure the TAgNPs surface plasmon resonance. FTIR spectroscopy confirmed the attached functional groups, XRD analysis confirmed the size and crystallinity, scanning electron microscopy revealed that the majority of the particles were spherical, and EDX performed the elemental analysis. For 21 days, alloxan-induced diabetic Wistar rats (N = 25, n = 5/group) were administered 10 mg/kg body weight of photosynthesized AgNPs as a standard animal model, while those in the untreated normal control group C, received distilled water as a control, diabetics who were treated with 0.5 mg/kg of body weight of glibenclamide, 10 mg/kg of methanolic T. couneifolia extract, and diabetics who were given 10 mg/kg of body weight of synthetic AgNPs derived from T. couneifolia in the DAgNPs group. At the conclusion of the treatment, lipid, liver and kidney profiles were re-examined to determine whether or not the treatment had been effective (day 21). Oral glucose doses of 2 g/kg of body weight were administered to each group, and blood glucose levels were measured at various intervals (day 21). Fasting glucose levels were measured using a glucometer. Each animal's urine was tested for leukocytes, nitrites, and bilirubin using lab-made prepared assay kits. One-way ANOVA and Dunnett's test were used for statistical analysis. Results: The surface plasmon resonance effect was examined with UV-vis, it showed a sharp peak at 412 nm. X-ray diffraction measurements indicated that the produced nanoparticles were between 15 to 31.44 nm in size. Alloxan-induced diabetic rats were fed AgNPs derived from phytosynthesized AgNPs, compared to diabetic control rats, diabetic rats treated with AgNPs showed a considerable improvement in their dyslipidemia status. Over the course of the days, it also lowered blood glucose levels. A reduction in blood glucose levels, a rise in body weight, and significant improvements in the lipid, liver, and renal profiles were also seen. Conclusions: The present findings revealed that plant mediated silver nanoparticles significantly improved the alloxan induced diabetic changes in various treated rats and might be used for the treatment of diabetes.
AuthorsMuhammad Nisar Ul Haq, Ghulam Mujtaba Shah, Farid Menaa, Rahmat Ali Khan, Norah A Althobaiti, Aishah E Albalawi, Huda Mohammed Alkreathy
JournalNanomaterials (Basel, Switzerland) (Nanomaterials (Basel)) Vol. 12 Issue 7 (Mar 22 2022) ISSN: 2079-4991 [Print] Switzerland
PMID35407153 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: