HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Near-Infrared Light Regulation of Tumor PI3K/Akt Signaling Pathway for Enhancing Cancer Cell Apoptosis through Conjugated Polymer Nanoparticles.

Abstract
Calmodulin (CaM), as a calcium binding protein involved in the signal pathways of many life activities such as cell proliferation and apoptosis, can be regulated with the near-infrared (NIR) light-based photothermal conversion. Here, we build a conjugated polymer nanoparticle (CPNs-C) by assembling polypyrrole dione and dipalmitoyl phosphatidylethanolamine-polyethylene glycol-maleimide with a calmodulin antibody modified on the surface, which is NIR light-responsive for photothermally inducing apoptosis of cancer cells. Under near-infrared light irradiation, protein kinase B (Akt) and phosphatidylinositol 3-kinase, which bind to CaM, reduce the degree of phosphorylation due to the photothermal effect of CPNs-C, thus inhibiting the recruitment of Akt on the cell membrane. Therefore, the phosphorylation of GSK-3β downstream of the signaling pathway is reduced, and the phosphorylation of FoxO3a is enhanced, which can promote apoptosis of cancer cells. Compared with the photothermal effect of traditional CPNs, CPNs-C exhibits higher efficiency to regulate signaling pathways to promote cancer cells toward apoptosis. This strategy of utilizing NIR light to regulate the tumor apoptotic signaling pathway provides an effective way to enhance cancer cell apoptosis with high efficiency.
AuthorsBenkai Bao, Dong Gao, Ning Li, Manman Wu, Chengfen Xing
JournalACS applied bio materials (ACS Appl Bio Mater) Vol. 3 Issue 4 Pg. 2428-2437 (Apr 20 2020) ISSN: 2576-6422 [Electronic] United States
PMID35025292 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: