HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

γ-mangostin attenuates amyloid-β42-induced neuroinflammation and oxidative stress in microglia-like BV2 cells via the mitogen-activated protein kinases signaling pathway.

AbstractBACKGROUND:
Oxidative stress (OS) and neuroinflammation are related to the pathogenic mechanism of Alzheimer's disease (AD). γ-Mangostin, a xanthone derivative obtained from mangosteen pericarp, could prevent their detrimental effects in AD.
OBJECTIVE:
This study focused on determining the role of γ-mangostin in protection against the amyloid-β (Aβ) 42 oligomers-induced OS and inflammation in microglial BV2 cells and investigating their precise mechanism of action.
METHODS:
Lactate dehydrogenase release assay and cell counting kit-8 assay were used to estimate the drug impact in BV2 cells and functional effects of the conditioned medium (supernatant of Aβ42 oligomers-/γ-mangostin-treated BV2 cells) on neuron-like SH-SY5Y and N2a cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay were carried out for detecting inflammatory factor contents. In addition, nitric oxide (NO) assay, an intracellular reactive oxygen species (ROS) assay, and qRT-PCR were performed to measure OS. Western blotting was used to explore the influence of γ-mangostin on the mitogen-activated protein kinase (MAPK) pathway.
RESULTS:
γ-Mangostin alleviated Aβ42 oligomer-induced inflammation by decreasing the levels of interleukin (IL) -6, IL-1β, and tumor necrosis factor-α, while attenuating OS through decreasing ROS/NO generation, and suppressing cyclo-oxygenase-2 and inducible NO synthase expressions. γ-Mangostin protected N2a and SH-SY5Ycells against the BV2 cell supernatant-induced toxicity following Aβ42 oligomer exposure. Furthermore, γ-mangostin inhibited c-Jun NH2-terminal kinase and p38 MAPK pathway activation.
CONCLUSION:
This study demonstrated that γ-mangostin could attenuate OS and inflammation resulting from Aβ42 oligomers, which also protect neurons against toxic medium-induced injury, suggesting that it may exert a protective effect in AD.
AuthorsChaojun Kong, Longfei Jia, Jianping Jia
JournalEuropean journal of pharmacology (Eur J Pharmacol) Vol. 917 Pg. 174744 (Feb 15 2022) ISSN: 1879-0712 [Electronic] Netherlands
PMID34998794 (Publication Type: Journal Article)
CopyrightCopyright © 2022. Published by Elsevier B.V.
Topics
  • Microglia

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: