HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Spotted Fever Group Rickettsia Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses.

Abstract
The molecular details underlying differences in pathogenicity between Rickettsia species remain to be fully understood. Evidence points to macrophage permissiveness as a key mechanism in rickettsial virulence. Different studies have shown that several rickettsial species responsible for mild forms of rickettsioses can also escape macrophage-mediated killing mechanisms and establish a replicative niche within these cells. However, their manipulative capacity with respect to host cellular processes is far from being understood. A deeper understanding of the interplay between mildly pathogenic rickettsiae and macrophages and the commonalities and specificities of host responses to infection would illuminate differences in immune evasion mechanisms and pathogenicity. We used quantitative proteomics by sequential windowed data independent acquisition of the total high-resolution mass spectra with tandem mass spectrometry (SWATH-MS/MS) to profile alterations resulting from infection of THP-1 macrophages with three mildly pathogenic rickettsiae: Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in these cells. We show that all three species trigger different proteome signatures. Our results reveal a significant impact of infection on proteins categorized as type I interferon responses, which here included several components of the retinoic acid-inducible gene I (RIG-1)-like signaling pathway, mRNA splicing, and protein translation. Moreover, significant differences in protein content between infection conditions provide evidence for species-specific induced alterations. Indeed, we confirm distinct impacts on host inflammatory responses between species during infection, demonstrating that these species trigger different levels of beta interferon (IFN-β), differences in the bioavailability of the proinflammatory cytokine interleukin 1β (IL-1β), and differences in triggering of pyroptotic events. This work reveals novel aspects and exciting nuances of macrophage-Rickettsia interactions, adding additional layers of complexity between Rickettsia and host cells' constant arms race for survival. IMPORTANCE The incidence of diseases caused by Rickettsia has been increasing over the years. It has long been known that rickettsioses comprise diseases with a continuous spectrum of severity. There are highly pathogenic species causing diseases that are life threatening if untreated, others causing mild forms of the disease, and a third group for which no pathogenicity to humans has been described. These marked differences likely reflect distinct capacities for manipulation of host cell processes, with macrophage permissiveness emerging as a key virulence trait. However, what defines pathogenicity attributes among rickettsial species is far from being resolved. We demonstrate that the mildly pathogenic Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in macrophages, trigger different proteome signatures in these cells and differentially impact critical components of innate immune responses by inducing different levels of beta interferon (IFN-β) and interleukin 1β (IL-1β) and different timing of pyroptotic events during infection. Our work reveals novel nuances in rickettsia-macrophage interactions, offering new clues to understand Rickettsia pathogenicity.
AuthorsPedro Curto, Cátia Santa, Luísa Cortes, Bruno Manadas, Isaura Simões
JournalMicrobiology spectrum (Microbiol Spectr) Vol. 9 Issue 3 Pg. e0081421 (12 22 2021) ISSN: 2165-0497 [Electronic] United States
PMID34935429 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Proteins
  • Proteome
Topics
  • Humans
  • Immune Evasion
  • Inflammation
  • Macrophages (immunology, microbiology)
  • Proteins (genetics, immunology)
  • Proteome (genetics, immunology)
  • Rickettsia (classification, genetics, immunology, physiology)
  • Rickettsia Infections (genetics, immunology, microbiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: