HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Expression and gene regulation network of TYMS and BCL2L1 in colorectal cancer based on data mining.

AbstractBACKGROUND:
The purpose of this study was to study the role of thymidylate synthetase (TYMS) and B-cell lymphoma-2 like 1 (BCL2L1) in the occurrence and development of colorectal cancer and its potential regulatory mechanism.
METHODS:
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to examine the expression and prognostic value of TYMS and BCL2L1 in colorectal cancer. C-BioPortal analysis was used to detect the TYMS and BCL2L1 alterations. Through The Human Protein Atlas (THPA), the TYMS and BCL2L1 protein levels were also assessed. The protein protein interaction (PPI) network was built using GeneMANIA analysis, while co-expression genes correlated with TYMS and BCL2L1 were identified using LinkedOmics analysis. Finally, we collected clinical samples to verify the expressions of TYMS and BCL2L1 in colorectal cancer.
RESULTS:
TYMS and BCL2L1 were up-regulated, and TYMS and BCL2L1 genomic alterations were not associated with the occurrence of colorectal cancer. TYMS and BCL2L1 were significantly connected with the prognosis of colorectal cancer patients. The genes interacted with TYMS and BCL2L1 were linked to functional networks involving pathway of apoptosis, apoptosis-multiple species, colorectal cancer, platinum drug resistance and p53 signaling pathway. qRT-PCR verification results of TYMS were consistent with the result of TCGA and GEO analysis.
CONCLUSIONS:
This study display that data mining can efficiently provide information on expression of TYMS and BCL2L1, correlated genes of TYMS and BCL2L1, core pathways and potential functional networks in colorectal cancer, suggesting that TYMS and BCL2L1 may become new prognostic and therapeutic targets for colorectal cancer.
AuthorsYanghua Jie, Xiaobei Yang, Weidong Chen
JournalPeerJ (PeerJ) Vol. 9 Pg. e11368 ( 2021) ISSN: 2167-8359 [Print] United States
PMID34141464 (Publication Type: Journal Article)
Copyright©2021 Jie et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: