HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei.

AbstractBACKGROUND AND PURPOSE:
Deep brain stimulation of the thalamus is an effective treatment for multiple neurological disorders. The centromedian and parafascicular nuclei are recently emerging targets for multiple conditions, such as epilepsy and Tourette syndrome; however, their limited visibility on conventional magnetic resonance imaging sequences has been a major obstacle. The goal of this study was to demonstrate the feasibility of a high-resolution and high-contrast targeting sequence for centromedian-parafascicular deep brain stimulation using a recently described magnetic resonance imaging sequence, three-dimensional edge-enhancing gradient echo.
METHODS:
The three-dimensional edge-enhancing gradient echo sequence was performed on a normal volunteer for a total of six acquisitions. Multi-image co-registration and averaging was performed by first co-registering each of the six scans and then averaging to produce an edge-enhancing gradient echo-multi-image co-registration and averaging scan. The averaging was also performed for two, three, four and five scans to assess the change in the signal-to-noise ratio and identify the ideal balance of image quality and scan time.
RESULTS:
The edge-enhancing gradient echo-multi-image co-registration and averaging scan allowed clear boundary delineation of the centromedian and parafascicular nuclei. The signal-to-noise ratio increased as a function of increasing scan number, but the added gain was small beyond four scans for the imaging parameters used in this study.
CONCLUSIONS:
The recently described three-dimensional edge-enhancing gradient echo sequence provides an easily implementable approach, using widely available magnetic resonance imaging technology without complex post-processing techniques, to delineate centromedian and parafascicular nuclei for deep brain stimulation targeting.
AuthorsErik H Middlebrooks, Lela Okromelidze, Chen Lin, Ayushi Jain, Erin Westerhold, Anthony Ritaccio, Alfredo Quiñones-Hinojosa, Vivek Gupta, Sanjeet S Grewal
JournalThe neuroradiology journal (Neuroradiol J) Vol. 34 Issue 6 Pg. 667-675 (Dec 2021) ISSN: 2385-1996 [Electronic] United States
PMID34121497 (Publication Type: Journal Article)
Topics
  • Deep Brain Stimulation
  • Epilepsy
  • Humans
  • Magnetic Resonance Imaging
  • Signal-To-Noise Ratio
  • Thalamic Nuclei
  • Thalamus (diagnostic imaging)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: