HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Forced expression of KIAA1199, a novel hyaluronidase, inhibits tumorigenicity of low-grade chondrosarcoma.

Abstract
Hyaluronan (HA) has been shown to play crucial roles in the tumorigenicity of malignant tumors. Chondrosarcoma, particularly when low-grade, is characterized by the formation of an extracellular matrix (ECM) containing abundant HA, and its drug/radiation resistance has become a clinically relevant problem. This study aimed to evaluate the effects of a novel hyaluronidase, KIAA1199, on ECM formation as well as antitumor effects on chondrosarcoma. To clarify the roles of KIAA1199 in chondrosarcoma, mouse KIAA1199 was stably transfected to Swarm rat chondrosarcoma (RCS) cells (histologically grade 1). We investigated the effects of KIAA1199 on RCS cells in vitro and an autografted model in vivo. HA binding protein (HABP) stainability and ECM formation in KIAA1199-RCS was markedly suppressed compared with that of control cells. No significant changes in messenger RNA expression of Has1, Has2, Has3, Hyal1, or Hyal2 were observed. KIAA1199 expression did not affect proliferation or apoptosis but inhibited migration and invasion of RCS cells. In contrast, the expression of KIAA1199 significantly inhibited the growth of grafted tumors and suppressed the stainability of alcian blue in tumor tissues. Although there was no direct inhibitory effect on proliferation in vitro, induction of KIAA1199 showed the antitumor effects in grafted tumor growth in vivo possibly due to changes in the tumor microenvironment such as inhibition of ECM formation. Forced expression of KIAA1199 exhibits antitumor effects on low-grade chondrosarcoma, which has chemo- and radio-therapy resistant features. Together, KIAA1199 could be a novel promising therapeutic tool for low-grade chondrosarcoma, mediated by the degradation of HA.
AuthorsHiroshi Koike, Yoshihiro Nishida, Tamayuki Shinomura, Lisheng Zhuo, Shunsuke Hamada, Kunihiro Ikuta, Kan Ito, Koji Kimata, Takahiro Ushida, Naoki Ishiguro
JournalJournal of orthopaedic research : official publication of the Orthopaedic Research Society (J Orthop Res) Vol. 38 Issue 9 Pg. 1942-1951 (09 2020) ISSN: 1554-527X [Electronic] United States
PMID32068299 (Publication Type: Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2020 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Chemical References
  • Hyaluronic Acid
  • Cemip protein, mouse
  • Hyaluronoglucosaminidase
Topics
  • Animals
  • Carcinogenesis
  • Cell Line, Tumor
  • Chondrosarcoma (metabolism)
  • Extracellular Matrix (metabolism)
  • Genetic Therapy
  • Hyaluronic Acid (metabolism)
  • Hyaluronoglucosaminidase (genetics, metabolism)
  • Neoplasm Transplantation
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: