HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Epitope-specific airway-resident CD4+ T cell dynamics during experimental human RSV infection.

Abstract
BACKGROUNDRespiratory syncytial virus (RSV) is an important cause of acute pulmonary disease and one of the last remaining major infections of childhood for which there is no vaccine. CD4+ T cells play a key role in antiviral immunity, but they have been little studied in the human lung.METHODSHealthy adult volunteers were inoculated i.n. with RSV A Memphis 37. CD4+ T cells in blood and the lower airway were analyzed by flow cytometry and immunohistochemistry. Bronchial soluble mediators were measured using quantitative PCR and MesoScale Discovery. Epitope mapping was performed by IFN-γ ELISpot screening, confirmed by in vitro MHC binding.RESULTSActivated CD4+ T cell frequencies in bronchoalveolar lavage correlated strongly with local C-X-C motif chemokine 10 levels. Thirty-nine epitopes were identified, predominantly toward the 3' end of the viral genome. Five novel MHC II tetramers were made using an immunodominant EFYQSTCSAVSKGYL (F-EFY) epitope restricted to HLA-DR4, -DR9, and -DR11 (combined allelic frequency: 15% in Europeans) and G-DDF restricted to HLA-DPA1*01:03/DPB1*02:01 and -DPA1*01:03/DPB1*04:01 (allelic frequency: 55%). Tetramer labeling revealed enrichment of resident memory CD4+ T (Trm) cells in the lower airway; these Trm cells displayed progressive differentiation, downregulation of costimulatory molecules, and elevated CXCR3 expression as infection evolved.CONCLUSIONSHuman infection challenge provides a unique opportunity to study the breadth of specificity and dynamics of RSV-specific T-cell responses in the target organ, allowing the precise investigation of Trm recognizing novel viral antigens over time. The new tools that we describe enable precise tracking of RSV-specific CD4+ cells, potentially accelerating the development of effective vaccines.TRIAL REGISTRATIONClinicalTrials.gov NCT02755948.FUNDINGMedical Research Council, Wellcome Trust, National Institute for Health Research.
AuthorsAleks Guvenel, Agnieszka Jozwik, Stephanie Ascough, Seng Kuong Ung, Suzanna Paterson, Mohini Kalyan, Zoe Gardener, Emma Bergstrom, Satwik Kar, Maximillian S Habibi, Allan Paras, Jie Zhu, Mirae Park, Jaideep Dhariwal, Mark Almond, Ernie Hc Wong, Annemarie Sykes, Jerico Del Rosario, Maria-Belen Trujillo-Torralbo, Patrick Mallia, John Sidney, Bjoern Peters, Onn Min Kon, Alessandro Sette, Sebastian L Johnston, Peter J Openshaw, Christopher Chiu
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 130 Issue 1 Pg. 523-538 (01 02 2020) ISSN: 1558-8238 [Electronic] United States
PMID31815739 (Publication Type: Clinical Trial, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Epitopes, T-Lymphocyte
Topics
  • Adolescent
  • Adult
  • CD4-Positive T-Lymphocytes (immunology, pathology)
  • Epitope Mapping
  • Epitopes, T-Lymphocyte
  • Female
  • Humans
  • Male
  • Middle Aged
  • Respiratory Syncytial Virus Infections (immunology, pathology)
  • Respiratory Syncytial Viruses (immunology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: