HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Exploiting Arginine Auxotrophy with Pegylated Arginine Deiminase (ADI-PEG20) to Sensitize Pancreatic Cancer to Radiotherapy via Metabolic Dysregulation.

Abstract
Distinct metabolic vulnerabilities of cancer cells compared with normal cells can potentially be exploited for therapeutic targeting. Deficiency of argininosuccinate synthetase-1 (ASS1) in pancreatic cancers creates auxotrophy for the semiessential amino acid arginine. We explored the therapeutic potential of depleting exogenous arginine via pegylated arginine deiminase (ADI-PEG20) treatment as an adjunct to radiotherapy. We evaluated the efficacy of treatment of human pancreatic cancer cell lines and xenografts with ADI-PEG20 and radiation via clonogenic assays and tumor growth delay experiments. We also investigated potential mechanisms of action using reverse-phase protein array, Western blotting, and IHC and immunofluorescence staining. ADI-PEG20 potently radiosensitized ASS1-deficient pancreatic cancer cells (MiaPaCa-2, Panc-1, AsPc-1, HPAC, and CaPan-1), but not ASS1-expressing cell lines (Bxpc3, L3.6pl, and SW1990). Reverse phase protein array studies confirmed increased expression of proteins related to endoplasmic reticulum (ER) stress and apoptosis, which were confirmed by Western blot analysis. Inhibition of ER stress signaling with 4-phenylbutyrate abrogated the expression of ER stress proteins and reversed radiosensitization by ADI-PEG20. Independent in vivo studies in two xenograft models confirmed significant tumor growth delays, which were associated with enhanced expression of ER stress proteins and apoptosis markers and reduced expression of proliferation and angiogenesis markers. ADI-PEG20 augmented the effects of radiation by triggering the ER stress pathway, leading to apoptosis in pancreatic tumor cells.
AuthorsPankaj K Singh, Amit A Deorukhkar, Bhanu P Venkatesulu, Xiaolin Li, Ramesh Tailor, John S Bomalaski, Sunil Krishnan
JournalMolecular cancer therapeutics (Mol Cancer Ther) Vol. 18 Issue 12 Pg. 2381-2393 (12 2019) ISSN: 1538-8514 [Electronic] United States
PMID31395686 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Copyright©2019 American Association for Cancer Research.
Chemical References
  • Polyethylene Glycols
  • Arginine
  • Hydrolases
  • ADI PEG20
Topics
  • Animals
  • Arginine (therapeutic use)
  • Cell Line, Tumor
  • Disease Models, Animal
  • Humans
  • Hydrolases (pharmacology, therapeutic use)
  • Mice
  • Pancreatic Neoplasms (drug therapy, pathology, radiotherapy)
  • Polyethylene Glycols (pharmacology, therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: