HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Plasminogen Activator Inhibitor 1 (PAI1) Promotes Actin Cytoskeleton Reorganization and Glycolytic Metabolism in Triple-Negative Breast Cancer.

Abstract
Migration and invasion of cancer cells constitute fundamental processes in tumor progression and metastasis. Migratory cancer cells commonly upregulate expression of plasminogen activator inhibitor 1 (PAI1), and PAI1 correlates with poor prognosis in breast cancer. However, mechanisms by which PAI1 promotes migration of cancer cells remain incompletely defined. Here we show that increased PAI1 drives rearrangement of the actin cytoskeleton, mitochondrial fragmentation, and glycolytic metabolism in triple-negative breast cancer (TNBC) cells. In two-dimensional environments, both stable expression of PAI1 and treatment with recombinant PAI1 increased migration, which could be blocked with the specific inhibitor tiplaxtinin. PAI1 also promoted invasion into the extracellular matrix from coculture spheroids with human mammary fibroblasts in fibrin gels. Elevated cellular PAI1 enhanced cytoskeletal features associated with migration, actin-rich migratory structures, and reduced actin stress fibers. In orthotopic tumor xenografts, we discovered that TNBC cells with elevated PAI1 show collagen fibers aligned perpendicular to the tumor margin, an established marker of invasive breast tumors. Further studies revealed that PAI1 activates ERK signaling, a central regulator of motility, and promotes mitochondrial fragmentation. Consistent with known effects of mitochondrial fragmentation on metabolism, fluorescence lifetime imaging microscopy of endogenous NADH showed that PAI1 promotes glycolysis in cell-based assays, orthotopic tumor xenografts, and lung metastases. Together, these data demonstrate for the first time that PAI1 regulates cancer cell metabolism and suggest targeting metabolism to block motility and tumor progression. IMPLICATIONS: We identified a novel mechanism through which cancer cells alter their metabolism to promote tumor progression.
AuthorsBrock A Humphries, Johanna M Buschhaus, Yu-Chih Chen, Henry R Haley, Tonela Qyli, Benjamin Chiang, Nathan Shen, Shrila Rajendran, Alyssa Cutter, Yu-Heng Cheng, Yu-Ting Chen, Jason Cong, Phillip C Spinosa, Euisik Yoon, Kathryn E Luker, Gary D Luker
JournalMolecular cancer research : MCR (Mol Cancer Res) Vol. 17 Issue 5 Pg. 1142-1154 (05 2019) ISSN: 1557-3125 [Electronic] United States
PMID30718260 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Copyright©2019 American Association for Cancer Research.
Chemical References
  • Plasminogen Activator Inhibitor 1
  • SERPINE1 protein, human
Topics
  • Actin Cytoskeleton (metabolism)
  • Animals
  • Cell Line, Tumor
  • Cell Movement
  • Female
  • Gene Expression Profiling (methods)
  • Gene Expression Regulation, Neoplastic
  • Glycolysis
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Lung Neoplasms (genetics, metabolism, pathology, secondary)
  • MAP Kinase Signaling System
  • Mice
  • Neoplasm Transplantation
  • Plasminogen Activator Inhibitor 1 (genetics, metabolism)
  • Triple Negative Breast Neoplasms (genetics, metabolism, pathology)
  • Up-Regulation
  • Whole Genome Sequencing

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: