HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

TREK-2 Mediates the Neuroprotective Effect of Isoflurane Preconditioning Against Acute Cerebral Ischemia in the Rat.

Abstract
It is known that preconditional treatment with volatile anesthetics can induce tolerance of the brain to stroke. A previous study demonstrated that the involvement of TREK-1, a two-pore domain K+ channel, in sevoflurane preconditioning induced neuroprotection against focal cerebral ischemia in rats. The present study testified whether TREK-2, another anesthetic-target K+ channel, is also associated with volatile anesthetic-induced neuroprotection, and further explored its potential mechanism. Rats preconditioned with isoflurane were subjected to 1.4vol% isoflurane plus 98% O2 (1.5 L/min) inhalation for 1 hour daily and continuing for 5 consecutive days. Then, these rats were subjected to middle cerebral artery occlusion (MCAO) as focal cerebral ischemia model. The expression of TWIK-related K+ channel 2 (TREK-2) was analyzed by western blotting and quantitative real-time RT-PCR, and its downstream signaling molecules, protein kinase C (PKC) alpha, extracellular signal-regulated kinase 1/2 (ERK1/2), and pERK1/2 were detected by western blotting also. Subsequently, the expression of TREK-2 was regulated by siRNA transfection in the brain to clarify its role in the neuroprotection of isoflurane preconditioning. Neurological scores, infarction volume, and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were examined to evaluate the outcomes. The impact of TREK-2 on the expression of its downstream signaling molecules was also examined for preliminary analysis of the possible mechanisms. Isoflurane preconditioning reduced the infarct volume, inhibited the cell apoptosis, and improved the neurological outcome in rats subjected to MCAO. These effects were parallel with the increase in TREK-2 protein and inhibition of the ERK1/2 phosphorylation. The downregulation of TREK-2 through siRNA could significantly attenuate the isoflurane preconditioning-induced neuroprotective effects. Isoflurane preconditioning-induced neuroprotective effects against ischemia-reperfusion injury are associated with the increase in TREK-2 channel activation. These effects depend on the attenuation of PKC alpha and inhibition of ERK1/2 phosphorylation. Results enrich our understanding on the mechanism of two-pore domain K+ channel in preconditioning-induced tolerance to focal cerebral ischemia.
AuthorsGuangchao Zhao, LuJia Yang, Shiquan Wang, Min Cai, Sisi Sun, Hailong Dong, Lize Xiong
JournalRejuvenation research (Rejuvenation Res) Vol. 22 Issue 4 Pg. 325-334 (Aug 2019) ISSN: 1557-8577 [Electronic] United States
PMID30412001 (Publication Type: Journal Article)
Chemical References
  • Kcnk10 protein, rat
  • Neuroprotective Agents
  • Potassium Channels, Tandem Pore Domain
  • Isoflurane
  • Extracellular Signal-Regulated MAP Kinases
Topics
  • Acute Disease
  • Animals
  • Brain Ischemia (metabolism, pathology)
  • Down-Regulation (drug effects)
  • Extracellular Signal-Regulated MAP Kinases (metabolism)
  • Infarction, Middle Cerebral Artery (complications)
  • Ischemic Preconditioning
  • Isoflurane (pharmacology)
  • Neuroprotective Agents (pharmacology)
  • Phosphorylation (drug effects)
  • Potassium Channels, Tandem Pore Domain (metabolism)
  • Rats, Sprague-Dawley
  • Reperfusion Injury (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: