HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells.

Abstract
The cystine-glutamate antiporter subunit xCT suppresses iron-dependent oxidative cell death (ferroptosis) and is therefore a promising target for cancer treatment. Given that cancer cells often show resistance to xCT inhibition resulting in glutathione (GSH) deficiency, however, we here performed a synthetic lethal screen of a drug library to identify agents that sensitize the GSH deficiency-resistant cancer cells to the xCT inhibitor sulfasalazine. This screen identified the oral anesthetic dyclonine which has been recently reported to act as a covalent inhibitor for aldehyde dehydrogenases (ALDHs). Treatment with dyclonine induced intracellular accumulation of the toxic aldehyde 4-hydroxynonenal in a cooperative manner with sulfasalazine. Sulfasalazine-resistant head and neck squamous cell carcinoma (HNSCC) cells were found to highly express ALDH3A1 and knockdown of ALDH3A1 rendered these cells sensitive to sulfasalazine. The combination of dyclonine and sulfasalazine cooperatively suppressed the growth of highly ALDH3A1-expressing HNSCC or gastric tumors that were resistant to sulfasalazine monotherapy. Our findings establish a rationale for application of dyclonine as a sensitizer to xCT-targeted cancer therapy.
AuthorsShogo Okazaki, Subaru Shintani, Yuki Hirata, Kentaro Suina, Takashi Semba, Juntaro Yamasaki, Kiyoko Umene, Miyuki Ishikawa, Hideyuki Saya, Osamu Nagano
JournalOncotarget (Oncotarget) Vol. 9 Issue 73 Pg. 33832-33843 (Sep 18 2018) ISSN: 1949-2553 [Electronic] United States
PMID30333913 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: