HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Specific protein carbonylation in human breast cancer tissue compared to adjacent healthy epithelial tissue.

Abstract
Protein carbonylation is an irreversible post-translational modification induced by severe oxidative stress. Reactive oxygen species (ROS) are constantly produced in cells and play important roles in both cancer progression and cancer suppression. ROS levels can be higher in tumor compared to surrounding healthy tissue but ROS-induced specific protein carbonylation and its unique role in cancer progression or suppression is poorly understood. In this study, we utilized previously validated ELISA and western blot methods to analyze the total and specific protein carbonylation in flash-frozen human breast cancer and matched adjacent healthy tissue to compare relative total, and specific protein carbonylation. Mass spectrometry, two-color western, and immunoprecipitation methods were used to identify and confirm the specifically carbonylated proteins in breast tumor tissue. Superoxide dismutase (SOD) activity was measured as an indicator of antioxidant activity, and LC3-II protein level was analyzed for autophagy by western blot. Findings were further confirmed using the immortalized MDA-MB-231 and MDA-MB-468 breast cancer and MCF-12A noncancerous human epithelial breast cell lines. Our results indicate that tumor tissue has greater total protein carbonylation, lower SOD1 and SOD2 protein levels, lower total SOD activity, and higher LC3-II levels compared to adjacent healthy tissue. We identified and confirmed three specific proteins of interest; filamin A, heat shock protein 90β (HSP90β), and bifunctional glutamate/proline-tRNA ligase (EPRS), that were selectively carbonylated in tumor tissue compared to matched adjacent healthy tissue. Correspondingly, compared to noncancerous MCF-12A epithelial cells, MDA-MB-231 cancer cells exhibited an increase in filamin A and EPRS protein carbonylation, decreased total SOD activity, and increased autophagy, but not increased HSP90β protein carbonylation. Identification of selectively carbonylated proteins and defining their roles in cancer progression may promote the development of targeted therapeutic approaches toward mitigating oxidative damage of these proteins.
AuthorsBaikuntha Aryal, V Ashutosh Rao
JournalPloS one (PLoS One) Vol. 13 Issue 3 Pg. e0194164 ( 2018) ISSN: 1932-6203 [Electronic] United States
PMID29596499 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Neoplasm Proteins
Topics
  • Breast Neoplasms (pathology)
  • Cell Line, Tumor
  • Female
  • Humans
  • Mammary Glands, Human (metabolism, pathology)
  • Neoplasm Proteins (metabolism)
  • Protein Carbonylation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: