HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects and mechanism of GA-13315 on the proliferation and apoptosis of KB cells in oral cancer.

Abstract
The present study describes the effects and mechanism of GA-13315 on the proliferation and apoptosis of KB cells in oral cancer. Oral cancer is twice as common in men than women. More than 90% of oral cancers in men and 85% in women are linked to lifestyle and environmental factors. PPP2R2B methylation may be associated with survival and prognosis in patients with gliomas. In tumor cell proliferation and apoptosis, the mechanism of PPP2R2B remains unclear. In the present study, we found that PPP2R2B expression of H1299 cells is significantly decreased after being treated by GA-13315. KB cells were isolated from patients with oral cancer and treated with GA-13315 (5 µM). Cells without GA-13315 treatment served as the control group. An MTT experiment was performed to detect the post-treatment cell growth between the groups. A flow cytometry was used to detect cell apoptosis. Western blot analysis and quantitative polymerase chain reaction methods were used for detecting the expression of PPP2R2B. Compared with the control group, the cell proliferation of the treatment group slowed after being treated with GA-13315. The difference was statistically significant (P<0.05). Western blotting showed that the PPP2R2B expression of cells was reduced after being treated with GA-13315. Compared with the control group, the difference was statistically significant (P<0.05). According to results from the Transwell migration assay, the invasiveness of the KB cells of oral cancer were weakened after being treated by GA-13315. GA-13315 can accelerate the apoptosis of oral cancer cells and presents a dose correlation. The biological effect is exerted through the decrease of PPP2R2B.
AuthorsShan Shen, Jingxia Tang
JournalOncology letters (Oncol Lett) Vol. 14 Issue 2 Pg. 1460-1463 (Aug 2017) ISSN: 1792-1074 [Print] Greece
PMID28789365 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: