HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Rapid and Robust Identification of the Agents of Black-Grain Mycetoma by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

Abstract
Eumycetoma, a chronic fungal infection endemic in India, Indonesia, and parts of Africa and South and Central America, follows traumatic implantation of saprophytic fungi and frequently requires radical surgery or amputation in the absence of appropriate treatment. Fungal species that can cause black-grain mycetomas include Madurella spp., Falciformispora spp., Trematosphaeria grisea, Nigrograna mackinnonii, Pseudochaetosphaeronema larense, Medicopsis romeroi, and Emarellia spp. Rhytidhysteron rufulum and Parathyridaria percutanea cause similar subcutaneous infections, but these infections lack the draining sinuses and fungal grains characteristic of eumycetoma. Accurate identification of the agents of subcutaneous fungal infection is essential to guide appropriate antifungal therapy. Since phenotypic identification of the causative fungi is often difficult, time-consuming molecular approaches are currently required. In the study described here we evaluated whether matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry might allow the accurate identification of eumycetoma agents and related fungi. A panel of 57 organisms corresponding to 10 different species from confirmed cases of eumycetoma and subcutaneous pedal masses, previously formally identified by PCR amplification and sequencing of internal transcribed spacer 1 (ITS1), was employed. Representative isolates of each species were used to create reference MALDI-TOF spectra, which were then used for the identification of the remaining isolates in a user-blinded manner. Here, we demonstrate that MALDI-TOF mass spectrometry accurately identified all of the test isolates, with 100%, 90.4%, and 67.3% of isolates achieving log scores greater than 1.8, 1.9, and 2.0, respectively.
AuthorsMark Fraser, Andrew M Borman, Elizabeth M Johnson
JournalJournal of clinical microbiology (J Clin Microbiol) Vol. 55 Issue 8 Pg. 2521-2528 (08 2017) ISSN: 1098-660X [Electronic] United States
PMID28592546 (Publication Type: Evaluation Study, Journal Article)
Copyright© Crown copyright 2017.
Chemical References
  • DNA, Fungal
  • DNA, Ribosomal Spacer
Topics
  • Cluster Analysis
  • DNA, Fungal (chemistry, genetics)
  • DNA, Ribosomal Spacer (chemistry, genetics)
  • Fungi (chemistry, classification, isolation & purification)
  • Humans
  • Mycetoma (diagnosis, microbiology)
  • Phylogeny
  • Sequence Analysis, DNA
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (methods)
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: