HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors.

Abstract
Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, Ki = 160 μM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumor growth inhibition efficacy in mouse flank xenograft models.
AuthorsLe Wang, John K Pratt, Todd Soltwedel, George S Sheppard, Steven D Fidanze, Dachun Liu, Lisa A Hasvold, Robert A Mantei, James H Holms, William J McClellan, Michael D Wendt, Carol Wada, Robin Frey, T Matthew Hansen, Robert Hubbard, Chang H Park, Leiming Li, Terrance J Magoc, Daniel H Albert, Xiaoyu Lin, Scott E Warder, Peter Kovar, Xiaoli Huang, Denise Wilcox, Rongqi Wang, Ganesh Rajaraman, Andrew M Petros, Charles W Hutchins, Sanjay C Panchal, Chaohong Sun, Steven W Elmore, Yu Shen, Warren M Kati, Keith F McDaniel
JournalJournal of medicinal chemistry (J Med Chem) Vol. 60 Issue 9 Pg. 3828-3850 (05 11 2017) ISSN: 1520-4804 [Electronic] United States
PMID28368119 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Macrocyclic Compounds
  • Pyridones
Topics
  • Animals
  • Crystallography, X-Ray
  • Drug Discovery
  • Macrocyclic Compounds (chemistry, pharmacokinetics, pharmacology)
  • Molecular Structure
  • Pyridones (chemistry, pharmacokinetics, pharmacology)
  • Rats
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: