HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Direct arterial injection of hyperpolarized 13 C-labeled substrates into rat tumors for rapid MR detection of metabolism with minimal substrate dilution.

AbstractPURPOSE:
A rat model was developed to enable direct administration of hyperpolarized 13 C-labeled molecules into a tumor-supplying artery for magnetic resonance spectroscopy (MRS) studies of tumor metabolism.
METHODS:
Rat P22 sarcomas were implanted into the right inguinal fat pad of BDIX rats such that the developing tumors received their principle blood supply directly from the right superior epigastric artery. Hyperpolarized 13 C-molecules were either infused directly to the tumor through the epigastric artery or systemically through the contralateral femoral vein. Spectroscopic data were obtained on a 7 Tesla preclinical scanner.
RESULTS:
Intra-arterial infusion of hyperpolarized 13 C-pyruvate increased the pyruvate tumor signal by a factor of 4.6, compared with intravenous infusion, despite an approximately 7 times smaller total dose to the rat. Hyperpolarized glucose signal was detected at near-physiological systemic blood concentration. Pyruvate to lactate but not glucose to lactate metabolism was detected in the tumor. Hyperpolarized 13 C-labeled combretastatin A1 diphosphate, a tumor vascular disrupting agent, showed an in vivo signal in the tumor.
CONCLUSIONS:
The model maximizes tumor substrate/drug delivery and minimizes T1 relaxation signal losses in addition to systemic toxicity. Therefore, it permits metabolic studies of hyperpolarized substrates with relatively short T1 and opens up the possibility for preclinical studies of hyperpolarized drug molecules. Magn Reson Med 78:2116-2126, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
AuthorsSteven Reynolds, Stephen Metcalf, Edward J Cochrane, Rebecca C Collins, Simon Jones, Martyn N J Paley, Gillian M Tozer
JournalMagnetic resonance in medicine (Magn Reson Med) Vol. 78 Issue 6 Pg. 2116-2126 (Dec 2017) ISSN: 1522-2594 [Electronic] United States
PMID28191664 (Publication Type: Journal Article)
Copyright© 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Chemical References
  • Carbon Isotopes
  • Stilbenes
  • combretastatin A-1
  • Pyruvic Acid
  • Gadolinium
Topics
  • Animals
  • Arteries (diagnostic imaging)
  • Carbon Isotopes (chemistry)
  • Drug Delivery Systems
  • Epigastric Arteries (diagnostic imaging)
  • Female
  • Femoral Vein (diagnostic imaging)
  • Gadolinium (chemistry)
  • Magnetic Resonance Spectroscopy
  • Male
  • Neoplasm Metastasis
  • Neoplasms (diagnostic imaging, metabolism)
  • Optical Imaging
  • Perfusion
  • Phosphorylation
  • Pyruvic Acid (chemistry)
  • Rats
  • Spectrophotometry
  • Stilbenes (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: