HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The presence of extra chromosomes leads to genomic instability.

Abstract
Aneuploidy is a hallmark of cancer and underlies genetic disorders characterized by severe developmental defects, yet the molecular mechanisms explaining its effects on cellular physiology remain elusive. Here we show, using a series of human cells with defined aneuploid karyotypes, that gain of a single chromosome increases genomic instability. Next-generation sequencing and SNP-array analysis reveal accumulation of chromosomal rearrangements in aneuploids, with break point junction patterns suggestive of replication defects. Trisomic and tetrasomic cells also show increased DNA damage and sensitivity to replication stress. Strikingly, we find that aneuploidy-induced genomic instability can be explained by the reduced expression of the replicative helicase MCM2-7. Accordingly, restoring near-wild-type levels of chromatin-bound MCM helicase partly rescues the genomic instability phenotypes. Thus, gain of chromosomes triggers replication stress, thereby promoting genomic instability and possibly contributing to tumorigenesis.
AuthorsVerena Passerini, Efrat Ozeri-Galai, Mirjam S de Pagter, Neysan Donnelly, Sarah Schmalbrock, Wigard P Kloosterman, Batsheva Kerem, Zuzana Storchová
JournalNature communications (Nat Commun) Vol. 7 Pg. 10754 (Feb 15 2016) ISSN: 2041-1723 [Electronic] England
PMID26876972 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • DNA
  • Minichromosome Maintenance Proteins
Topics
  • Aneuploidy
  • Cell Cycle (genetics)
  • Cell Line
  • Chromosomes, Human, Pair 21 (genetics)
  • Chromosomes, Human, Pair 3 (genetics)
  • Chromosomes, Human, Pair 5 (genetics)
  • Chromosomes, Human, Pair 8 (genetics)
  • Comparative Genomic Hybridization
  • DNA (biosynthesis)
  • Fluorescent Antibody Technique
  • Genomic Instability (genetics)
  • HCT116 Cells
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Metaphase (genetics)
  • Microscopy, Confocal
  • Minichromosome Maintenance Proteins (metabolism)
  • Neoplasms (genetics)
  • Oligonucleotide Array Sequence Analysis
  • Polymorphism, Single Nucleotide
  • Sequence Analysis, DNA
  • Tetrasomy (genetics)
  • Trisomy (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: