HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Expression of acidosis-dependent genes in human cancer nests.

Abstract
Previous studies investigating cancer cells cultured at acidic pH have shown that the expression level of ~700 genes were more than two-fold higher than those of the cells cultured in alkaline medium at pH 7.5. The aim of the present study was to confirm whether these acidosis-induced genes are expressed in human cancer tissues. Therefore, 7 genes were selected from our previous study, which encoded interleukin 32 (IL-32), lysosomal H+ transporting ATPase, V0 subunit d2 (ATP6V0D2), tumor necrosis factor receptor superfamily, member 9 (TNFRSF9), amphiregulin, schwannoma-derived growth factor (AREG), v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3), PRR5-ARHGAP8 (LOC553158) and dimethylglycine dehydrogenase (DMGDH), and their expression was examined in human clinical specimens from patients with cancer. In addition, the expression of the gene encoding manganese superoxide dismutase (MnSOD) was examined. The specimens from patients with colon, stomach and renal cancer showed increased MnSOD, IL-32, and TNFRSF9 transcripts compared to those from non-tumorous regions of the same patients. Notably, an elevated expression of ATP6V0D2 was found in the specimens from patients with stomach cancer, whereas the expression was decreased in those from patients with colon and renal cancer. The expression of LOC553158 was upregulated in colon and stomach cancer specimens. These results indicate that the investigation of gene expression under acidic conditions is useful for the development of novel cancer markers and/or chemotherapeutic targets.
AuthorsToshihiko Fukamachi, Shunsuke Ikeda, Hiromi Saito, Masatoshi Tagawa, Hiroshi Kobayashi
JournalMolecular and clinical oncology (Mol Clin Oncol) Vol. 2 Issue 6 Pg. 1160-1166 (Nov 2014) ISSN: 2049-9450 [Print] England
PMID25279216 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: