HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Evaluation of [¹¹¹In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection.

AbstractPURPOSE:
This study prepared three structurally related zinc-dipicolylamine (ZnDPA) tracers with [(111)In] labels and conducted biodistribution and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging studies of a mouse leg infection model.
PROCEDURES:
Two monovalent tracers, ZnDPA-[(111)In]DTPA and ZnDPA-[(111)In]DOTA, each with a single zinc-dipicolylamine targeting unit, and a divalent tracer, Bis(ZnDPA)-[(111)In]DTPA, with two zinc-dipicolylamine units were prepared. Organ biodistribution and SPECT and CT imaging studies were performed on living mice with a leg infection created by injection of clinically relevant Gram positive Streptococcus pyogenes. Fluorescent and luminescent Eu(3+)-labeled versions of these tracers were also prepared and used to measure relative affinity for the exterior membrane surface of bacterial cells and mimics of healthy mammalian cells.
RESULTS:
All three (111)In-labeled radiotracers were prepared with a radiopurity of >90 %. The biodistribution studies showed that the two monovalent tracers were cleared from the body through the liver and kidney, with retained percentage injected dose for all organs of <8 % at 20 h and infected leg target to non-target ratio (T/NT) ratio of ≤3.0. Clearance of the divalent tracer from the bloodstream was slower and primarily through the liver, with a retained percentage injected dose for all organs <37 % at 20 h and T/NT ratio rising to 6.2 after 20 h. The SPECT/CT imaging indicated the same large difference in tracer pharmacokinetics and higher accumulation of the divalent tracer at the site of infection.
CONCLUSIONS:
All three [(111)In]-ZnDPA tracers selectively targeted the site of a clinically relevant mouse infection model that could not be discerned by visual external inspection of the living animal. The highest target selectivity, observed with a divalent tracer equipped with two zinc-dipicolylamine targeting units, compares quite favorably with the imaging selectivities previously reported for other nuclear tracers that target bacterial cell surfaces. The tracer pharmacokinetics depended heavily on tracer molecular structure suggesting that it may be possible to rapidly fine tune the structural properties for optimized in vivo imaging performance and clinical translation.
AuthorsDouglas R Rice, Adam J Plaunt, Serhan Turkyilmaz, Miles Smith, Yuzhen Wang, Mary Rusckowski, Bradley D Smith
JournalMolecular imaging and biology (Mol Imaging Biol) Vol. 17 Issue 2 Pg. 204-13 (Apr 2015) ISSN: 1860-2002 [Electronic] United States
PMID25115869 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Indium Radioisotopes
  • Organometallic Compounds
  • Picolinic Acids
  • bis-dipicolylamine-Zinc(II)
  • Europium
Topics
  • Animals
  • Bacterial Infections (diagnostic imaging)
  • Cell Membrane (metabolism)
  • Chromatography, High Pressure Liquid
  • Disease Models, Animal
  • Europium
  • Extremities (diagnostic imaging, microbiology)
  • Indium Radioisotopes
  • Mice, Nude
  • Microscopy, Fluorescence
  • Organometallic Compounds (blood)
  • Picolinic Acids (blood)
  • Streptococcus pyogenes (cytology)
  • Tissue Distribution
  • Tomography, Emission-Computed, Single-Photon
  • Tomography, X-Ray Computed
  • Whole Body Imaging

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: