HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cancers and the NSD family of histone lysine methyltransferases.

Abstract
Both genetic and epigenetic alterations are responsible for the stepwise initiation and progression of cancers. Only epigenetic aberrations can be reversible, allowing the malignant cell population to revert to a more benign phenotype. The epigenetic therapy of cancers is emerging as an effective and valuable approach to both the chemotherapy and the chemoprevention of cancer. The utilization of epigenetic targets that include histone methyltransferase (HMTase), Histone deacetylatase, and DNA methyltransferase, are emerging as key therapeutic targets. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, and plays a critical part in chromatin integrity as evidenced by a growing number of conditions linked to the alterations and/or amplification of NSD1, NSD2, and/or NSD3. NSD1, NSD2 and NSD3 are associated with multiple cancers. The amplification of either NSD1 or NSD2 triggers the cellular transformation and thus is key in the early carcinogenesis events. In most cases, reducing the levels of NSD proteins would suppress cancer growth. NSD1 and NSD2 were isolated as genes linked to developmental diseases, such as Sotos syndrome and Wolf-Hirschhorn syndrome, respectively, implying versatile aspects of the NSD proteins. The NSD pathways, however, are not well understood. It is noteworthy that the NSD family is phylogenetically distinct compared to other known lysine-HMTases, Here, we review the current knowledge on NSD1/NSD2/NSD3 in tumorigenesis and prospect their special value for developing novel anticancer drugs.
AuthorsMasayo Morishita, Eric di Luccio
JournalBiochimica et biophysica acta (Biochim Biophys Acta) Vol. 1816 Issue 2 Pg. 158-63 (Dec 2011) ISSN: 0006-3002 [Print] Netherlands
PMID21664949 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
CopyrightCopyright © 2011 Elsevier B.V. All rights reserved.
Chemical References
  • Intracellular Signaling Peptides and Proteins
  • Nuclear Proteins
  • Repressor Proteins
  • Histone Methyltransferases
  • Histone-Lysine N-Methyltransferase
  • NSD1 protein, human
  • NSD2 protein, human
  • NSD3 protein, human
Topics
  • Drug Design
  • Epigenesis, Genetic
  • Histone Methyltransferases
  • Histone-Lysine N-Methyltransferase (antagonists & inhibitors, physiology)
  • Humans
  • Intracellular Signaling Peptides and Proteins (antagonists & inhibitors, physiology)
  • Neoplasms (etiology)
  • Nuclear Proteins (antagonists & inhibitors, physiology)
  • Repressor Proteins (antagonists & inhibitors, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: