HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Motor and somatosensory evoked potentials in Autosomal Dominant Hereditary Spastic Paraparesis (ADHSP) linked to chromosome 2p, SPG4.

Abstract
The aim of our study was to evaluate Motor Evoked Potentials (MEPs) and cortical excitability, using Transcranial Magnetic Stimulation (TMS) as well as short latency Somatosensory Evoked Potentials (SEPs) in Autosomal Dominant Hereditary Spastic Paraparesis (ADHSP) patients. MEPs were recorded from upper and lower limb muscles in 12 patients (7 m and 5f) affected by ADHSP with spastin mutation (SPG4). We measured: (i) motor threshold (MTh); (ii) total motor conduction time (TMCT); (iii) direct and indirect central motor conduction time (d-CMCT and i-CMCT) calculated by subtracting from the cortical latency those obtained on magnetic spinal stimulation (d-PMCT) and via the F-wave method (i-PMCT); (iv) MEP amplitude (MEP/Mmax ratio%) and (v) duration of the cortical silent period (CSP). Latency, amplitude and persistence of the F-wave obtained with electrical nerve stimulation were also considered; H reflex was also tested from lower extremities. SEPs were recorded from spine and scalp sites following median and posterior tibial nerve stimulation; conventional latency and amplitude measurements were performed. In a comparison with the control group, the MTh recording from lower limbs was significantly higher (67.5 +/- 7.7% versus 52.5 +/- 6.9%), MEPs were absent in one case and showed reduced amplitude in the remainders (22.9 +/- 12.6% versus 66.3 +/- 25.9% of M wave); TMCT resulted to be abnormal (36.5 +/- 3.9 ms versus 27.1 +/- 1.4 ms) and d-CMCT as well as i-CMCT were significantly prolonged (23.1 +/- 3.5 ms versus 13.8 +/- 1.3 ms; and 20.1 +/- 3.4 ms versus 10.6 +/- 1.3 ms, respectively). The CSP, which was normal from the hands, was significantly shortened from the legs and correlated with spasticity scoring (Ashworth scale). Cortical SEPs from lower limbs were abnormal in all cases, whereas SEPs by stimulation of median nerves were normal; F-wave parameters from upper limbs showed no abnormalities, whereas an increased persistence was detected from lower limbs; H reflex amplitudes resulted larger compared with controls. Moreover, shortening of the CSP, being correlated with the Ashworth scale, can be considered an electrophysiological marker of spasticity that seems to arise from impairment of the supraspinal or intracortical inhibitory pathways with an additional contribution of increased segmental motor neuron excitability. These data prove the existence of comparable neurophysiological abnormalities in ADHSP with spastin mutation (SPG4) when long ascending and descending pathways are involved.
AuthorsF Sartucci, S Tovani, L Murri, L Sagliocco
JournalBrain research bulletin (Brain Res Bull) Vol. 74 Issue 4 Pg. 243-9 (Sep 28 2007) ISSN: 0361-9230 [Print] United States
PMID17720546 (Publication Type: Journal Article)
Chemical References
  • Adenosine Triphosphatases
  • Spastin
  • SPAST protein, human
Topics
  • Adenosine Triphosphatases (genetics)
  • Adult
  • Chromosomes, Human, Pair 2
  • Electric Stimulation
  • Electromyography
  • Evoked Potentials, Motor (physiology)
  • Evoked Potentials, Somatosensory (physiology)
  • Female
  • Humans
  • Male
  • Middle Aged
  • Mutation (genetics)
  • Neural Conduction
  • Neural Inhibition
  • Reaction Time
  • Spastic Paraplegia, Hereditary (genetics, physiopathology)
  • Spastin
  • Transcranial Magnetic Stimulation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: