HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Co-culture of RhoA-overexpressed Microtia Chondrocytes and Adipose-Derived Stem Cells in the Construction of Tissue-engineered Ear-shaped Cartilage.

Abstract
Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted from the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1 and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help to improve the quality of microtia chondrocyte engineered cartilage. However, co-culture of ADSCs significantly improved the biochemical and biomechanical property of engineered cartilage. Especially, co-culture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix and biomechanical property of engineered cartilage. Furthermore, we presented that co-culture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.
AuthorsYi Wu, Jian Wang, Xiu Li, Kang Wang, Zonglin Huang, Qian Wang, Xin Fu, Haiyue Jiang, Bo Pan, Ran Xiao
JournalStem cells (Dayton, Ohio) (Stem Cells) (Apr 13 2024) ISSN: 1549-4918 [Electronic] England
PMID38613477 (Publication Type: Journal Article)
Copyright© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: