HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dual elemental doping activated signaling pathway of angiogenesis and defective heterojunction engineering for effective therapy of MRSA-infected wounds.

Abstract
Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.
AuthorsJin Huang, Shuilin Wu, Yi Wang, Jie Shen, Chaofeng Wang, Yufeng Zheng, Paul K Chu, Xiangmei Liu
JournalBioactive materials (Bioact Mater) Vol. 37 Pg. 14-29 (Jul 2024) ISSN: 2452-199X [Electronic] China
PMID38515610 (Publication Type: Journal Article)
Copyright© 2024 The Authors.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: