HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Engineering of CuMOF-SWCNTs@AuNPs-Based Electrochemical Sensors for Ultrasensitive and Selective Monitoring of Imatinib in Human Serum.

Abstract
Imatinib (IMA) is a common chemotherapy drug for the treatment of leukemia and can potentially lead to drug resistance and toxicity during the course of treatment. Monitoring IMA concentrations in body fluids is necessary to optimize therapeutic schedules and avoid overdosage. In this paper, a novel ultrasensitive electrochemical sensor based on CuMOF and SWCNTs@AuNPs was developed to determine this antileukemic drug. Herein, AuNPs were supported on carboxylic single-walled carbon nanotubes (SWCNT-COOH), and then poly(diallyldimethylammonium chloride) (PDDA) was used as a dispersant to overcome the internal van der Waals interactions among the CNTs, further increasing the AuNP loading. Moreover, the morphology, structure, composition, and electrochemical properties of the CuMOF-SWCNTs@AuNPs composite film were characterized using SEM, TEM, FT-IR, UV-vis, XRD, XPS, CV, and EIS. Due to the advantage of the superior electrocatalytic and conductive properties of SWCNTs@AuNPs and their preferable adsorptivity and affinity to IMA of CuMOF, the fabricated glassy carbon electrode significantly improved the determination performance via their synergetic amplified effect. Under optimal conditions, a wide linear response was exhibited in the range from 0.05 to 20.0 μM and the low detection limit of 5.2 nM. In addition, our prepared sensor has been applied to the analysis of IMA in blood serum samples with acceptable results. Therefore, our CuMOF-SWCNTs@AuNPs-based electrochemical sensor possessed prominent sensing responses for IMA, which could be used as a prospective approach in clinical application.
AuthorsXuanming Xu, Wei Li, Hao Xin, Lian Tang, Xiaoyan Zhou, Tingting Zhou, Chao Xuan, Qingwu Tian, Deng Pan
JournalACS omega (ACS Omega) Vol. 9 Issue 4 Pg. 4744-4753 (Jan 30 2024) ISSN: 2470-1343 [Electronic] United States
PMID38313513 (Publication Type: Journal Article)
Copyright© 2024 The Authors. Published by American Chemical Society.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: