HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

In vivo analgesic, anti-inflammatory and molecular docking studies of S-naproxen derivatives.

Abstract
In the current studies two naproxen derivatives (NPD) were evaluated for analgesic and anti-inflammatory properties. The acetic acid and hot plate animal models were used to screen the compounds for analgesic potential. While the anti-inflammatory potential was evaluated through animal paw edema, induced by several inflammatory mediators (carrageenan, bradykinin, and prostaglandin E2), the xylene-induced ear edema was also used as an inflammatory model. Both NPDs showed significant (p < 0.001) antinociceptive effects in the acetic acid-induced writhing paradigm. In the case of the hot plate, the NPD 1 at the tested dose of 5 mg/kg enhanced the latency time after 60 min of injection, which remained significant (p < 0.001) up to the end of the experiment duration. The maximum percent inhibition of NPD 1 was 87.53. The naloxone injection significantly lowered the latency time of NPD 1 as compared to NPD 2. Regarding the anti-inflammatory effect, both of the tested NPDs demonstrated a significant reduction in paw edema against various inflammatory mediators, as mentioned above; however, the anti-inflammatory effect of NPD 1 was better. The maximal percent inhibition by NPD 1 and 2 was 43.24 (after 60 min) and 45.93 (after 90 min). A considerable effect also resulted from xylene-induced ere edema. Further, a molecular docking study was carried out to investigate the binding modes of the NPD. The docking analysis revealed that the NPD significantly interacted with the COX2 enzyme. Furthermore, molecular dynamics simulation was carried out for the docked complexes. The MD simulation analysis revealed the high stability of the two naproxen derivatives.
AuthorsNaveed Muhammad, Rashid Khan, Faiza Seraj, Abad Khan, Ubaid Ullah, Abdul Wadood, Amar Ajmal, Uzma, Basharat Ali, Khalid Mohammed Khan, Noor Ul Ain Nawaz, Najla AlMasoud, Taghrid S Alomar, Abdur Rauf
JournalHeliyon (Heliyon) Vol. 10 Issue 2 Pg. e24267 (Jan 30 2024) ISSN: 2405-8440 [Print] England
PMID38304837 (Publication Type: Journal Article)
Copyright© 2024 The Authors.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: