HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Targeting CD38/ ADP-ribosyl cyclase as a novel therapeutic strategy for identification of three potent agonists for leukopenia treatment.

Abstract
Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.
AuthorsYuanzhi Liu, Linwei Zhang, Long Wang, Xiaoqin Tang, Shengli Wan, Qianqian Huang, Mei Ran, Hongping Shen, Yan Yang, Sawitree Chiampanichayakul, Singkome Tima, Songyot Anuchapreeda, Jianming Wu
JournalPharmacological research (Pharmacol Res) Vol. 200 Pg. 107068 (Feb 2024) ISSN: 1096-1186 [Electronic] Netherlands
PMID38232908 (Publication Type: Journal Article)
CopyrightCopyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chemical References
  • ADP-ribosyl Cyclase
  • ADP-ribosyl Cyclase 1
  • Antigens, CD
  • Antigens, Differentiation
  • Membrane Glycoproteins
Topics
  • Humans
  • Mice
  • Animals
  • ADP-ribosyl Cyclase (metabolism)
  • ADP-ribosyl Cyclase 1
  • Antigens, CD (genetics)
  • Antigens, Differentiation (genetics)
  • Membrane Glycoproteins
  • Zebrafish (metabolism)
  • Leukopenia (chemically induced, drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: