HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer.

Abstract
Neutrophil extracellular traps (NETs), a web-like structure of cytosolic and granule proteins assembled on decondensed chromatin, kill pathogens and cause tissue damage in diseases. Whether NETs can kill cancer cells is unexplored. Here, we report that a combination of glutaminase inhibitor CB-839 and 5-FU inhibited the growth of PIK3CA-mutant colorectal cancers (CRCs) in xenograft, syngeneic, and genetically engineered mouse models in part through NETs. Disruption of NETs by either DNase I treatment or depletion of neutrophils in CRCs attenuated the efficacy of the drug combination. Moreover, NETs were present in tumor biopsies from patients treated with the drug combination in a phase II clinical trial. Increased NET levels in tumors were associated with longer progression-free survival. Mechanistically, the drug combination induced the expression of IL-8 preferentially in PIK3CA-mutant CRCs to attract neutrophils into the tumors. Further, the drug combination increased the levels of ROS in neutrophils, thereby inducing NETs. Cathepsin G (CTSG), a serine protease localized in NETs, entered CRC cells through the RAGE cell surface protein. The internalized CTSG cleaved 14-3-3 proteins, released BAX, and triggered apoptosis in CRC cells. Thus, our studies illuminate a previously unrecognized mechanism by which chemotherapy-induced NETs kill cancer cells.
AuthorsYamu Li, Sulin Wu, Yiqing Zhao, Trang Dinh, Dongxu Jiang, J Eva Selfridge, George Myers, Yuxiang Wang, Xuan Zhao, Suzanne Tomchuck, George Dubyak, Richard T Lee, Bassam Estfan, Marc Shapiro, Suneel Kamath, Amr Mohamed, Stanley Ching-Cheng Huang, Alex Y Huang, Ronald Conlon, Smitha Krishnamurthi, Jennifer Eads, Joseph E Willis, Alok A Khorana, David Bajor, Zhenghe Wang
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 134 Issue 5 (Jan 09 2024) ISSN: 1558-8238 [Electronic] United States
PMID38194275 (Publication Type: Journal Article)
Chemical References
  • Class I Phosphatidylinositol 3-Kinases
  • Drug Combinations
Topics
  • Humans
  • Animals
  • Mice
  • Extracellular Traps
  • Disease Models, Animal
  • Class I Phosphatidylinositol 3-Kinases
  • Drug Combinations
  • Colorectal Neoplasms (drug therapy, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: