HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A novel benzothiazole-based mononuclear platinum(II) complex displaying potent antiproliferative activity in HepG-2 cells via mitochondrial-mediated apoptosis.

Abstract
A novel mononuclear platinum(II) complex, [Pt(L-H)Cl] (1, where L= N-(4-(benzo[d]thiazol-2-yl)phenyl)-2-((2-pyridylmethyl)(2-hydroxyethyl)-amino)acetamide), was obtained by covalently tethering a benzothiazole derivative 2-(4-aminophenyl)benzothiazole to the 2-pyridylmethyl-2-hydroxyethylamine chelating PtII center. In vitro tests indicated that complex 1 displayed excellent antiproliferative activity against the tested cancer cell lines, especially liver cancer HepG-2 and SMMC-7221 cells. Importantly, the complex possessed 4.33-fold higher antiproliferative activity as compared with cisplatin against HepG-2 cells, but was less toxic to the normal cell line L02 with the selectivity index (SI = IC50(L02)/IC50(HepG-2)) value of 8.36 compared to cisplatin (SI, 1.40). The results suggested that 1 might have the potential to act as a candidate for the treatment of hepatocellular carcinoma (HCC). Cellular uptake and distribution studies showed that 1 could effectively pass through the membrane of cells, enter the nuclei and mitochondria, induce the platination of cellular DNA. The interaction of 1 with CT-DNA demonstrated that 1 could effectively bind to DNA in a dual binding mode, i.e., the intercalation of the 2-(4-aminophenyl)benzothiazole unit plus monofunctional platination of the platinum(II) moiety. In addition, Hoechst 33342 staining and flow cytometry analysis illustrated that 1 arrested the cell cycle in HepG-2 cancer cells at G2/M phases, induced mitochondrial membrane depolarization, increased ROS generation, and caused obvious cell apoptosis. Further cellular mechanism studies elucidated that 1 triggered HepG-2 cell apoptosis via the mitochondrial-mediated pathway by upregulating the gene and protein expression levels of Bax, downregulating the gene and protein expression levels of Bcl-2, and activating the caspase cascade.
AuthorsDandan Zhao, Hongyan Zhen, Jian Xue, Zhipeng Tang, Xiaofang Han, Zhanfen Chen
JournalJournal of inorganic biochemistry (J Inorg Biochem) Vol. 251 Pg. 112437 (Nov 22 2023) ISSN: 1873-3344 [Electronic] United States
PMID38016330 (Publication Type: Journal Article)
CopyrightCopyright © 2023. Published by Elsevier Inc.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: