HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Adventitial delivery of miR-145 to treat intimal hyperplasia post vascular injuries through injectable and in-situ self-assembling peptide hydrogels.

Abstract
Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. To develop a vascular adventitial drug delivery system to treat intimal hyperplasia post vascular injuries, we loaded miR-145-5p-agomir (miR-145) into an injectable and in-situ self-assembling RAD peptide hydrogel. In vitro data showed that the miR-145 could be well incorporated into the RAD peptide hydrogels and released in a slow and controlled manner. The released miR-145 could transfect SMCs successfully, and the transfected SMCs exhibited a reduced migration capacity and higher expressions of SMC contractile biomarkers as compared to the non-transfected SMCs. In vivo data showed that the retention of the miR-145 was greatly elongated by the RAD peptide hydrogels. In addition, the application of the miR-145-loaded RAD peptide hydrogels surrounding injured arteries decreased the proliferative SMCs, promoted the regeneration of endothelium, reduced the macrophage infiltration, inhibited the neointimal formation and prevented adverse ECM remodeling via downregulation of KLF4 expression. The RAD peptide hydrogels loaded with miR-145 can successfully inhibit intimal hyperplasia after vascular injuries and thus hold great potential as an innovative extravascular drug delivery approach to treat vascular diseases. STATEMENT OF SIGNIFICANCE: Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. Our work here demonstrates that the RAD peptide hydrogels loaded with miR-145-5p-agomir (miR-145) can successfully reverse intimal hyperplasia after vascular injuries and thus hold great potential as an innovative vascular adventitial drug delivery approach to treat vascular diseases. Our work proposes a possible paradigm shift from endovascular drug delivery to extravascular drug delivery for vascular disorder treatment.
AuthorsJing Zhao, Shaofei Wu, Mingqi Zhang, Xulin Hong, Meng Zhao, Shihui Xu, Jian Ji, Kefeng Ren, Guosheng Fu, Jiayin Fu
JournalActa biomaterialia (Acta Biomater) Vol. 173 Pg. 247-260 (Jan 01 2024) ISSN: 1878-7568 [Electronic] England
PMID37939818 (Publication Type: Journal Article)
CopyrightCopyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chemical References
  • Hydrogels
  • Peptides
  • MicroRNAs
  • MIRN145 microRNA, human
Topics
  • Humans
  • Vascular System Injuries (therapy, metabolism, pathology)
  • Hyperplasia (metabolism, pathology)
  • Muscle, Smooth, Vascular (metabolism)
  • Hydrogels (pharmacology, metabolism)
  • Peptides (pharmacology, metabolism)
  • MicroRNAs (genetics, metabolism)
  • Cell Proliferation
  • Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: