HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Decreased bladder contraction interval induced by periaqueductal grey stimulation is reversed by subthalamic stimulation in a Parkinson's disease model rat.

Abstract
The medial prefrontal cortex (mPFC) regulates bladder contractions via the periaqueductal grey (PAG). Subthalamic nucleus deep brain stimulation (STN-DBS) modulates urinary afferent information from PAG in Parkinson's disease (PD). We do not know how STN-DBS modulates the activities of mPFC induced by PAG stimulation. We aim to clarify how STN-DBS modulates the neuronal activity of mPFC induced by PAG stimulation and its effects on bladder contraction Experiments were conducted under urethane anesthesia in normal (n = 9) and 6-hydroxydopamine hemi-lesioned PD rats (n = 7). Left-sided PAG stimulation and STN-DBS were applied with simultaneous bladder contraction monitoring. Local field potential (LFP) recording and collection of extracellular fluid in the mPFC were performed before stimulation, during PAG stimulation, during PAG+STN stimulation, and after stimulation. The bladder inter-contraction intervals significantly decreased with PAG stimulation with a concomitant decrease in mPFC LFP power in PD rats. Adding STN stimulation to PAG stimulation significantly increased the bladder inter-contraction intervals with a concomitant increase in mPFC LFP power in PD rats. Several mPFC catecholamine levels were modulated by PAG or PAG+STN stimulation in PD rats. The present study revealed that STN-DBS modulate the activities of mPFC induced by PAG, thereby leading to normalization of bladder contraction.
AuthorsTatsuya Yamamoto, Ryuji Sakakibara, Tomoyuki Uchiyama, Satoshi Kuwabara
JournalIBRO neuroscience reports (IBRO Neurosci Rep) Vol. 15 Pg. 293-303 (Dec 2023) ISSN: 2667-2421 [Electronic] Netherlands
PMID37885830 (Publication Type: Journal Article)
Copyright© 2023 The Authors.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: