HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Proliferation and differentiation of MC3T3-E1 cells on polymethyl methacrylate cements containing Fe3O4 and TiO2 for hyperthermic treatment of metastatic bone tumors.

Abstract
Polymethyl methacrylate (PMMA) bone cement is widely used to relieve pain caused by metastatic bone tumors. We previously found that PMMA bone cement containing 15 mass% or more of TiO2 showed good apatite-forming ability, and 25 mass% or more of Fe3O4 generated sufficient heat for hyperthermia under an alternating current (AC) magnetic field. In this study, the cytocompatibility of PMMA bone cement with Fe3O4:TiO2 weight ratios of 25:15 (F25T15-3/2-42) and 30:15 (F30T15-3/2-42) was evaluated using osteoblastic cells (MC3T3-E1). The proliferation and differentiation of MC3T3-E1 cells were suppressed for F25T15-3/2-42 and F30T15-3/2-42 compared to PMMA bone cement without Fe3O4 and TiO2 (F0T0-3/2-42). The release of methyl methacrylate (MMA) monomers from F25T15-3/2-42 and F30T15-3/2-42 at 7 days was about 33 and 50 times higher than that from F0T0-3/2-42, respectively. The remarkable release of MMA monomers from F25T15-3/2-42 and F30T15-3/2-42 may be responsible for the suppressed proliferation and differentiation of MC3T3-E1 cells. The release of MMA monomers was not reduced when the MMA/PMMA weight ratio was decreased from 3/2 to 1/1, however, it was significantly reduced by increasing the content of benzoyl peroxide (BPO) and N, N-dimethyl-p-toluidine (DMPT) to 8 and 4 mass% against MMA, respectively. Proliferation and differentiation of MC3T3-E1 cells on PMMA-type cements containing Fe3O4 and TiO2 with increased BPO and DMPT contents need to be investigated in the future; however, our findings will be useful for designing PMMA cements for the hyperthermic treatment of metastatic bone tumors.
AuthorsMoe Kubota, Maiko Furuya, Kotone Yokota, Hiroyasu Kanetaka, Tomoyuki Ogawa, Shin Saito, Balachandran Jeyadevan, Masaya Shimabukuro, Taishi Yokoi, Masakazu Kawashita
JournalJournal of biomaterials applications (J Biomater Appl) Vol. 38 Issue 5 Pg. 605-613 (Nov 2023) ISSN: 1530-8022 [Electronic] England
PMID37807835 (Publication Type: Journal Article)
Chemical References
  • Polymethyl Methacrylate
  • Bone Cements
  • dimethylpropiothetin
  • titanium dioxide
  • Methylmethacrylate
Topics
  • Humans
  • Polymethyl Methacrylate
  • Bone Cements (therapeutic use)
  • Methylmethacrylate
  • Cell Differentiation
  • Bone Neoplasms (therapy)
  • Cell Proliferation
  • Materials Testing

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: