HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

MicroRNA-25/93 induction by Vpu as a mechanism for counteracting MARCH1-restriction on HIV-1 infectivity in macrophages.

Abstract
The type 1 interferon-regulated E3 ubiquitin ligase MARCH1 reduces surface expression of HIV-1 envelope glycoproteins (Env) and their packaging into nascent virions, a condition that restricts viral infectivity. However, how HIV-1 counters this restriction, notably during infection of macrophages, remains unclear. Here, we show that the HIV-1 accessory protein Vpu increases the levels of microRNAs-25 and -93 to target MARCH1 mRNA. By recruiting β-TRCP, a component of the SCFβ-TRCP E3 ligase complex that targets phosphorylated β-catenin for degradation, Vpu increases β-catenin levels, which, in concert with TCF4/LEF, drives transcription of the MARCH1-targeting microRNAs. This potentiates HIV-1 infectivity as a result of increased Env incorporation into nascent virions. Pharmacological targeting of the β-catenin pathway inhibits Vpu-mediated upregulation of microRNAs-25 and -93 and restores MARCH1 restriction on HIV-1 infectivity. Overall, our findings highlight a novel mechanism by which HIV-1 counteracts MARCH1 by downregulating its expression via Vpu-mediated induction of microRNAs-25 and -93. IMPORTANCE In order to efficiently produce infectious viral particles, HIV must counter several restrictions exerted by host cell antiviral proteins. MARCH1 is a member of the MARCH protein family that restricts HIV infection by limiting the incorporation of viral envelope glycoproteins into nascent virions. Here, we identified two regulatory RNAs, microRNAs-25 and -93, induced by the HIV-1 accessory protein Vpu, that downregulate MARCH1 mRNA. We also show that Vpu induces these cellular microRNAs in macrophages by hijacking the cellular β-catenin pathway. The notion that HIV-1 has evolved a mechanism to counteract MARCH1 restriction on viral infectivity underlines the importance of MARCH1 in the host antiviral response.
AuthorsRobert Lodge, Zaikun Xu, Mckenna Eklund, Christina Stürzel, Frank Kirchhoff, Michel J Tremblay, Tom C Hobman, Éric A Cohen
JournalmBio (mBio) Pg. e0195023 (Sep 29 2023) ISSN: 2150-7511 [Electronic] United States
PMID37773002 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: